Geometrization of the Local and Global Theta Correspondence with Applications to the Kudla Program
局部和全局 Theta 对应的几何化及其在 Kudla 程序中的应用
基本信息
- 批准号:2200804
- 负责人:
- 金额:$ 28.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
For well over a century now, mathematicians have known that certain quantities arising from the arithmetic of the integers (such as the number of ways of representing a natural number as a sum of four squares) have subtle relationships with quantities (Fourier coefficients) arising from representation theory and harmonic analysis, which is the process of understanding how graphs of functions can be realized as superpositions of simpler waveforms. The overarching goal of this project is to study the geometry of these relationships, via the so-called theta correspondence, thereby making progress towards resolving longstanding conjectures in arithmetic geometry. The project provides training opportunities for graduate students. These wide-ranging conjectures posit a deep relationship between Eisenstein series and the internal geometry of certain Shimura varieties, which have turned out to be fundamental objects in modern arithmetic geometry. The principal investigator intends to use methods from derived algebraic geometry in the global setting and recent developments in the local setting to gain a conceptual understanding of the geometry undergirding the truth of these conjectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一个多世纪以来,数学家们已经知道,从整数的算术中产生的某些量(例如将自然数表示为四个平方之和的方法的数量)与来自表示理论和调和分析的量(傅立叶系数)具有微妙的关系,调和分析是理解如何将函数的图形实现为更简单波形的叠加的过程。这个项目的首要目标是通过所谓的theta对应来研究这些关系的几何学,从而在解决算术几何中长期存在的猜想方面取得进展。该项目为研究生提供了培训机会。这些广泛的猜想建立了Eisenstein级数和某些Shimura簇的内部几何之间的深层次联系,这些簇已被证明是现代算术几何中的基本对象。首席研究人员打算使用全球背景下的派生代数几何和当地背景下的最新发展来获得对支撑这些猜想真相的几何的概念性理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keerthi Madapusi其他文献
Keerthi Madapusi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keerthi Madapusi', 18)}}的其他基金
P-adic Methods in the Arithmetic and Geometry of Shimura Varieties
志村品种算术和几何中的 P-adic 方法
- 批准号:
1802169 - 财政年份:2018
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
The Arithmetic and Geometry of Integral Models of Orthogonal Shimura Varieties
正交志村品种积分模型的算术和几何
- 批准号:
1803623 - 财政年份:2017
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
The Arithmetic and Geometry of Integral Models of Orthogonal Shimura Varieties
正交志村品种积分模型的算术和几何
- 批准号:
1502142 - 财政年份:2015
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
相似国自然基金
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
- 批准号:11872210
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
miRNA-140调控软骨Local RAS对骨关节炎中骨-软骨复合单元血管增生和交互作用影响的研究
- 批准号:81601936
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
- 批准号:
2317079 - 财政年份:2024
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
Local Meets Global: Engaging with International Development Research, Policy and Practice around Gender and Social Transformation
地方与全球相遇:参与围绕性别和社会转型的国际发展研究、政策和实践
- 批准号:
ES/Y010353/1 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Fellowship
Collaborative Research: From Global to Local: Geochemistry of Global Phosphate Ores and Implications for Tracing the Environmental Impacts of Fertilizers Utilization
合作研究:从全球到地方:全球磷矿石的地球化学以及追踪化肥利用对环境影响的意义
- 批准号:
2305947 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Continuing Grant
A local approach to the implementation of a global plastic treaty
实施全球塑料条约的本地方法
- 批准号:
23K12429 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Global monocultures and local diversity: Gilbert White, and natural observation as a form of community-building
全球单一文化和地方多样性:吉尔伯特·怀特和自然观察作为社区建设的一种形式
- 批准号:
2878509 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Studentship
Global Issues, Local Issues: The SDGs and Social Justice in Japan and Abroad
全球问题、地方问题:日本和国外的可持续发展目标和社会正义
- 批准号:
23K00665 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
he Construction of Medicine v.s. Non-medicine: a Historical and Social Study of Herbs' Materiality and Knowledge Productions in the Local and Global Context
他的医学建设与。
- 批准号:
23K12073 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Children of War: Evolving Local and Global Understandings of Child Soldiering in African Conflicts, c.1940-2000
战争儿童:当地和全球对非洲冲突中儿童兵的理解的演变,c.1940-2000
- 批准号:
AH/X00399X/1 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Research Grant
Zero-cycles over local and global fields
局部和全局领域的零循环
- 批准号:
2302196 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Standard Grant
Local Governments and Policy Processes of Producing 'Global Human Resources': Japan's National Project of Internationalizing Education
地方政府和培养“全球人力资源”的政策进程:日本国家教育国际化项目
- 批准号:
23K12731 - 财政年份:2023
- 资助金额:
$ 28.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists