Irrationality of Periods and Arithmetic of Abelian Varieties

周期的无理性与阿贝尔簇的算术

基本信息

  • 批准号:
    2201124
  • 负责人:
  • 金额:
    $ 20.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

This research project concerns work in Diophantine geometry and arithmetic geometry, which are essentially ways to understand solutions of families of polynomial equations. The first part of the project studies irrationality in Diophantine geometry. A classical way to prove a number is irrational is by showing that there exists a sequence of rational numbers that approximate this number very well. There are many interesting (conjecturally) irrational numbers in the literature with approximations by rational numbers that are not good enough to apply the classical methods. The principal investigator and collaborators will develop a new framework to explore the properties of certain power series constructed from these approximations in order to prove the conjectured irrationality in some important cases. The second part of the project studies the arithmetic of abelian varieties, which are higher dimensional analogues of elliptic curves. These geometric objects can be defined by polynomial equations over the integers. The principal investigator and collaborators will study the behavior of certain abelian varieties modulo different prime numbers. The proposed work includes the training of undergraduate and graduate students. For the first part, the classical way of proving irrationality can be formulated as studying the convergence radii of the power series associated to the rational approximations and comparing them to the denominator type of the power series. In earlier studies of rationality and algebraicity criterion of power series, the convergence radii have been replaced by many variants, which are numerically larger; therefore, there are rational approximations whose convergence radii are too small compared to the denominator type while these variants are large enough. The PI and collaborators expect to explore these larger radii variants to solve some irrationality questions. For the second part, the PI and collaborators expect to generalize Elkies’s theorem on infinitude of supersingular reductions of elliptic curves to certain abelian varieties parametrized by genus 0 Shimura curves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究计画涉及丢番图几何与算术几何的研究,这是了解多项式方程族解的基本方法。该项目的第一部分研究丢番图几何中的非理性。证明一个数是无理数的经典方法是证明存在一个很好地近似这个数的有理数序列。在文献中有许多有趣的(从理论上讲)无理数,它们用有理数近似,但不足以应用经典方法。主要研究者和合作者将开发一个新的框架来探索从这些近似构造的某些幂级数的性质,以证明在一些重要情况下的非理性。第二部分研究了阿贝尔簇的算法,阿贝尔簇是椭圆曲线的高维类似物。这些几何对象可以由整数上的多项式方程定义。主要研究者和合作者将研究某些阿贝尔变种模不同素数的行为。拟议的工作包括培训本科生和研究生。 对于第一部分,证明非理性的经典方法可以表述为研究与有理逼近相关联的幂级数的收敛半径,并将它们与幂级数的分母类型进行比较。在幂级数的有理性和代数性判据的早期研究中,收敛半径被许多变量所取代,这些变量在数值上更大;因此,存在收敛半径与分母类型相比太小的有理逼近,而这些变量足够大。PI和合作者希望探索这些更大的半径变体,以解决一些不合理的问题。对于第二部分,PI和合作者希望将Elkies关于椭圆曲线的超奇异约化的无穷大定理推广到由亏格0 Shimura曲线参数化的某些阿贝尔簇。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunqing Tang其他文献

Ultra-sensitive label-free DNA detection based on n-type accumulation mode vertical organic electrochemical transistors
基于 n 型积累模式垂直有机电化学晶体管的超灵敏无标记 DNA 检测
  • DOI:
    10.1016/j.talanta.2025.128561
  • 发表时间:
    2026-01-01
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Kun Xu;Kejie Zhang;Bowen Liu;Lingchao Li;Li Wang;Yujing Zhang;Songcheng Yu;Yunqing Tang
  • 通讯作者:
    Yunqing Tang
Gr/HEA-Fesubemx/em/subNiCrCoCu interface getting excellent thermal transport
Gr/HEA-Fe 衬底/em/衬底 NiCrCoCu 界面获得优异的热传输
  • DOI:
    10.1016/j.intermet.2025.108756
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Yinjie Shen;Juan Guo;Yunqing Tang;Ping Yang
  • 通讯作者:
    Ping Yang
Thermal Effects on LED Lamp With Different Thermal Interface Materials
不同热界面材料对 LED 灯的热影响
  • DOI:
    10.1109/ted.2016.2615882
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Yunqing Tang;Dongjing Liu;Haiying Yang;Ping Yang
  • 通讯作者:
    Ping Yang
Cycles in the de Rham cohomology of abelian varieties over number fields
数域上阿贝尔簇的 de Rham 上同调中的循环
  • DOI:
    10.1112/s0010437x17007679
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Yunqing Tang
  • 通讯作者:
    Yunqing Tang
Bauschinger effect in nano-grinding of 3C-SiC: A molecular dynamics study
3C-SiC 纳米磨削中的包辛格效应:分子动力学研究
  • DOI:
    10.1016/j.wear.2025.205847
  • 发表时间:
    2025-06-15
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Xiangyang Zhao;Yunqing Tang;Keyang Chen;Yukui Cai;Xiaoliang Liang;Zhanqiang Liu;Dongyang Li
  • 通讯作者:
    Dongyang Li

Yunqing Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunqing Tang', 18)}}的其他基金

Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
  • 批准号:
    2231958
  • 财政年份:
    2022
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Arithmetic Intersection on Shimura Varieties and Properties of Abelian Varieties
志村品种的算术交集及阿贝尔品种的性质
  • 批准号:
    1801237
  • 财政年份:
    2018
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant

相似海外基金

Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
  • 批准号:
    NE/V006630/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
  • 批准号:
    NE/V007289/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
  • 批准号:
    NE/V006509/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Research Grant
Assessing ocean-forced, marine-terminating glacier change in Greenland during climatic warm periods and its impact on marine productivity (Kang-Glac)
评估气候温暖时期格陵兰岛受海洋驱动、海洋终止的冰川变化及其对海洋生产力的影响 (Kang-Glac)
  • 批准号:
    NE/V006517/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Research Grant
A Study of Iconography on Christianity in the Late Meiji and Taisho Periods.
明治末大正时期基督教图像学研究。
  • 批准号:
    23KJ1545
  • 财政年份:
    2023
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Design of quantum phases with long-periods by structural defection on a lattice
通过晶格结构缺陷设计长周期量子相
  • 批准号:
    23KJ0801
  • 财政年份:
    2023
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Assessing Amazon forest vulnerability and resilience to dry periods across soil moisture and microenvironmental gradients
评估亚马逊森林在土壤湿度和微环境梯度下的干旱期脆弱性和恢复能力
  • 批准号:
    2882399
  • 财政年份:
    2023
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Studentship
A Local Historical Study of Adult and Community Education Concerned with Social Work in the Taisho and Early Showa Periods
大正和昭和初期与社会工作有关的成人和社区教育的地方历史研究
  • 批准号:
    23K02082
  • 财政年份:
    2023
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sensitive periods for prenatal alcohol exposure: a longitudinal study of DNA methylation and subsequent mental health
产前酒精暴露的敏感期:DNA 甲基化和随后心理健康的纵向研究
  • 批准号:
    10573715
  • 财政年份:
    2023
  • 资助金额:
    $ 20.1万
  • 项目类别:
Traffic of Mountain Passes and Regional Transformations in Asian Mountainous Regions in the Early Modern and Modern Periods
近代及近代亚洲山地的山口交通与区域变迁
  • 批准号:
    23H00678
  • 财政年份:
    2023
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了