Ricci Flows and Steady Ricci Solitons

里奇流和稳态里奇孤子

基本信息

  • 批准号:
    2203310
  • 负责人:
  • 金额:
    $ 17.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This award supports research in differential geometry focusing on Ricci flows. These flows are defined on manifolds equipped with a metric, that is to say, a way of measuring distance. A Ricci flow is a geometric partial differential equation for Riemannian metrics. The Ricci flow tends to evolve an initial metric into a more homogeneous one. The singularity analysis of Ricci flow is a central subject, as it helps to understand the geometry and topology of manifolds. The most remarkable application in this direction is the resolution of the Poincare conjecture and the Geometrization conjecture by Perelman. Many of the Ricci flow singularity models are Ricci solitons. Recent examples of solitons constructed by the PI look like flying wings. The PI will study the geometry of all 3-dimensional steady Ricci solitons and try to classify them by their asymptotic limits. In addition, the PI will study the higher-dimensional steady Ricci solitons and see if they can arise as singularity models.The research project is split into two projects. The first project is to prove the O(2)-symmetry of all 3-dimensional steady Ricci solitons. This includes showing that the Bryant soliton is the unique 3-dimensional steady Ricci soliton that is asymptotic to a ray. This extends a previous result of the PI in which one assumes the O(2)-symmetry of the soliton. The PI developed some methods that may be extended to the more general class of ancient collapsed Ricci flows in dimension 3. In particular, the PI will investigate the symmetry of the ancient collapsed Ricci flows in dimension 3 and aim at classifying them by certain 2-dimensional limits. The second project is a continuation of the PI's work on the existence theory of Ricci flows coming out of non-compact initial manifolds. The PI will investigate the applications of non-compact Ricci flows in topology and geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持微分几何的研究重点是里奇流。这些流动是在配备了公制的流形上定义的,也就是说,一种测量距离的方法。Ricci流是黎曼度量的几何偏微分方程。Ricci流倾向于将初始度量演化为更齐次的度量。里奇流的奇异性分析是一个中心课题,因为它有助于理解流形的几何和拓扑。在这个方向上最显著的应用是Perelman对庞加莱猜想和几何化猜想的解决。许多Ricci流奇异性模型都是Ricci孤子。最近由PI构造的孤子的例子看起来像飞行的翅膀。PI将研究所有三维稳态Ricci孤子的几何形状,并试图根据它们的渐近极限对它们进行分类。此外,PI将研究高维稳态Ricci孤子,看看它们是否可以作为奇异模型出现。第一个方案是证明所有三维定常Ricci孤子的O(2)对称性。这包括表明,布莱恩特孤子是唯一的三维稳定的里奇孤子是渐近的射线。这推广了PI中假设孤子具有O(2)对称性的一个结果。PI开发了一些方法,可以扩展到更一般的类古代崩溃的里奇流在3维。特别是,PI将研究三维中古代坍缩的Ricci流的对称性,并旨在通过某些二维限制对其进行分类。第二个项目是继续PI的工作存在理论的Ricci流出来的非紧初始流形。PI将研究非紧致Ricci流在拓扑学和几何学中的应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yi Lai其他文献

Design of Muscle Gene Therapy Expression Cassette
肌肉基因治疗表达盒的设计
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Lai;D. Duan
  • 通讯作者:
    D. Duan
Fast Single Image Dehazing via Positive Correlation
通过正相关快速单图像去雾
Rotation Moment Invariant Feature Extraction Techniques for Image Matching
用于图像匹配的旋转矩不变特征提取技术
  • DOI:
    10.4028/www.scientific.net/amm.721.775
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Lai
  • 通讯作者:
    Yi Lai
Image segmentation via grabcut and linear multi-scale smoothing
通过抓取和线性多尺度平滑进行图像分割
Smart drug delivery platforms reprogramming cancer immune cycle to mitigate immune resistance of pancreatic tumors
智能药物递送平台重新编程癌症免疫周期以减轻胰腺肿瘤的免疫抵抗
  • DOI:
    10.1016/j.addr.2025.115620
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    17.600
  • 作者:
    Ping Zhang;Jiaxing Pan;Shutong Lin;Bo Peng;Caiyan An;Junjing Zhang;Leiming Xu;Yi Lai;Haijun Yu;Zhiai Xu
  • 通讯作者:
    Zhiai Xu

Yi Lai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Steepland dynamics and steady-state forms resulting from debris flows
合作研究:泥石流造成的陡峭地带动力学和稳态形式
  • 批准号:
    1951185
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant
Collaborative Research: Steepland dynamics and steady-state forms resulting from debris flows
合作研究:泥石流造成的陡峭地带动力学和稳态形式
  • 批准号:
    1951274
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant
Computational fluid dynamics simulations of lateral and uplift forces acting on structures set in steady open channel flows
作用于稳定明渠流中结构的侧向力和升力的计算流体动力学模拟
  • 批准号:
    18K04426
  • 财政年份:
    2018
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Buzz Saw Noise Propogation in Steady Distorted Intake Flows
稳定扭曲进气流中的圆锯噪声传播
  • 批准号:
    1941794
  • 财政年份:
    2016
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Studentship
Numerical and experimental studies of heat transfer in steady and unsteady laminar or turbulent natural and mixed convective flows
稳定和非稳定层流或湍流自然对流和混合对流传热的数值和实验研究
  • 批准号:
    5573-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical and experimental studies of heat transfer in steady and unsteady laminar or turbulent natural and mixed convective flows
稳定和非稳定层流或湍流自然对流和混合对流传热的数值和实验研究
  • 批准号:
    5573-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical and experimental studies of heat transfer in steady and unsteady laminar or turbulent natural and mixed convective flows
稳定和非稳定层流或湍流自然对流和混合对流传热的数值和实验研究
  • 批准号:
    5573-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Discovery Grants Program - Individual
Flow Prediction and Fluctuation-sensitivity Investigations for Quasi-steady Shear Driven Condensing Flows in Milli-meter to Micro-meter Scale Two-Phase Systems
毫米至微米级两相系统中准稳态剪切驱动冷凝流的流量预测和波动敏感性研究
  • 批准号:
    1033591
  • 财政年份:
    2010
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant
Numerical and experimental studies of heat transfer in steady and unsteady laminar or turbulent natural and mixed convective flows
稳定和非稳定层流或湍流自然对流和混合对流传热的数值和实验研究
  • 批准号:
    5573-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical and experimental studies of heat transfer in steady and unsteady laminar or turbulent natural and mixed convective flows
稳定和非稳定层流或湍流自然对流和混合对流传热的数值和实验研究
  • 批准号:
    5573-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了