EAGER: Urban Sensing of Pedestrians through Integrated, Cost-Effective, and Scalable Audio Sensor Networks
EAGER:通过集成、经济高效且可扩展的音频传感器网络实现城市行人感知
基本信息
- 批准号:2203408
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This EArly-concept Grant for Exploratory Research (EAGER) project will investigate the usefulness of microphones for estimating pedestrian traffic. Recently, with the growing interest in active mobility and walkability, several cities are experimenting with various technologies to sense people. Pedestrian traffic estimation, which has been mostly based on video data analysis or infrared sensors, can be scaled up if microphone-based sensors are deemed equally effective. Acoustic sensor technology, while starting to be deployed for noise pollution measurement and the classification of urban noise sources, has not been explored in the pedestrian sensing context despite its considerable advantages in cost and power requirements. The main reason for the current underutilization of microphone-based sensors is the challenging task of analyzing the audio signal from a multitude of different sources. To address this hitherto unsolved challenge, technology developed for highly complex music audio signals will be adapted to the urban sensing context. Furthermore, a novel dataset comprising audio recordings with pedestrian count annotations will be curated and released to facilitate future research in this area. The project will also demonstrate how the data extracted from audio sensing can be used for pedestrian flow estimation in a small urban area.The project will experiment with a range of off-the-shelf hardware components in a pedestrian-heavy campus environment to investigate how far audio technology can be pushed to sense people, and to assess the possibilities for scalability. As the problem is particularly challenging due to high noise level and potentially low-level pedestrian sound, we speculate that state-of-the-art approaches in audio classification might not be powerful enough to solve the problem of pedestrian count estimation sufficiently well. Inspired by recent work with structured music representations learned through multi-task learning and supervised latent space regularization, a novel experimental regularization approach to representation learning for audio data is applied. This self-supervised learning approach to regularization supports structuring the latent space representation based on feature distances. The additional regularization loss term is derived from the distances of powerful task-relevant pre-trained features in current audio representation structures. This loss, computed for each pair of training data points, can be computed without data annotations as it is based solely on the feature distances between training data points. It enables implicitly imparting domain knowledge through the regularizing feature and thus improves the inductive bias of the network.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个探索性研究的早期概念拨款项目将调查麦克风对估计行人交通的有用性。最近,随着人们对主动移动和步行的兴趣日益浓厚,一些城市正在试验各种感知人类的技术。行人交通估计主要基于视频数据分析或红外传感器,如果基于麦克风的传感器被认为同样有效,则可以扩大规模。声学传感器技术虽然开始用于噪声污染测量和城市噪声源分类,但在行人感知环境中尚未进行探索,尽管其在成本和功率要求方面具有相当大的优势。目前基于麦克风的传感器未充分利用的主要原因是分析来自众多不同来源的音频信号的挑战性任务。为了解决这个迄今为止尚未解决的挑战,为高度复杂的音乐音频信号开发的技术将适应城市传感环境。此外,一个包含行人计数注释的音频记录的新数据集将被整理和发布,以促进该领域的未来研究。该项目还将演示如何将从音频传感中提取的数据用于小城市地区的行人流量估计。该项目将在行人密集的校园环境中试验一系列现成的硬件组件,以研究音频技术在多大程度上可以被推动到感知人,并评估可扩展性的可能性。由于高噪声水平和潜在的低水平行人声音,这个问题特别具有挑战性,我们推测,最先进的音频分类方法可能不足以很好地解决行人计数估计问题。受最近通过多任务学习和监督潜在空间正则化学习的结构化音乐表示的工作的启发,我们提出了一种新的实验正则化方法来学习音频数据的表示。这种自监督的正则化学习方法支持基于特征距离构建潜在空间表示。额外的正则化损失项来自于当前音频表示结构中与任务相关的强大预训练特征的距离。这种损失是为每对训练数据点计算的,可以在没有数据注释的情况下计算,因为它完全基于训练数据点之间的特征距离。它可以通过正则化特征隐式地传授领域知识,从而改善网络的归纳偏置。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUBHRAJIT GUHATHAKURTA其他文献
SUBHRAJIT GUHATHAKURTA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUBHRAJIT GUHATHAKURTA', 18)}}的其他基金
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
- 批准号:
2243100 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
The Remote Sensing of Urban Energy Efficiency
城市能源效率遥感
- 批准号:
RGPIN-2019-07185 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Urban Transit System Diagnosis, Monitoring, and Management Using Mobility Sensing Data
使用移动传感数据进行城市交通系统诊断、监控和管理
- 批准号:
RGPIN-2020-03944 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Mobile social network analytics and mobile edge solutions for trustworthy and reliable urban sensing
移动社交网络分析和移动边缘解决方案,实现值得信赖和可靠的城市感知
- 批准号:
RGPIN-2017-04032 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Mobile social network analytics and mobile edge solutions for trustworthy and reliable urban sensing
移动社交网络分析和移动边缘解决方案,实现值得信赖和可靠的城市感知
- 批准号:
RGPIN-2017-04032 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Analysis of thermal physiological environment with remote sensing and big data: For urban design
遥感和大数据热生理环境分析:用于城市设计
- 批准号:
21H01468 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on an intelligent sensing system for fine-grained data of urban garbage discharge
城市垃圾排放细粒度数据智能感知系统研究
- 批准号:
21K17735 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Remote Sensing Technology for The Identification and Classifiation or Urban Trees
城市树木识别分类遥感技术
- 批准号:
2581890 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Studentship
Remote sensing tree functionality in urban infrastructure
城市基础设施中的遥感树功能
- 批准号:
2620637 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Studentship
Developing resilience and strengthening capacity of urban disaster risk management using remote sensing.
利用遥感发展城市灾害风险管理的复原力和能力。
- 批准号:
2598942 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Studentship
Multimodal Integrated Remote Sensing for Urban Environments
城市环境多模态综合遥感
- 批准号:
2595829 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Studentship