Ricci Curvature and Torsion

里奇曲率和挠率

基本信息

  • 批准号:
    2203536
  • 负责人:
  • 金额:
    $ 20.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Geometry plays a fundamental role in different areas of mathematics, physics, and other scientific disciplines. A central and deeply studied concept in our modern approach to geometry is that of `curvature.’ Uncovering the modern definition of curvature played a key role in the development of Einstein’s theory of relativity over a century ago. On the other hand, the idea of `torsion,’ is a less understood, though no less important, part of geometry. This project will support fundamental research into geometric structures which naturally incorporate torsion, aiming at new applications in mathematics and physics. In addition to supporting research this award will support various training initiatives for undergraduates and graduate students. This includes mentorship of undergraduates to prepare them for graduate study, and professional training and guidance for graduate students. As UC Irvine is nationally recognized as having a diverse student body, this training will support goals of inclusive excellence across at all higher educational levels.The Ricci curvature, Einstein metrics, and Ricci flow play a central, essential, role in our understanding of geometry and analysis, deeply influencing our understanding of a diverse array of subjects such as heat kernels, Brownian motion, partial differential equations, low-dimensional topology, complex geometry, algebraic geometry, and more. Taking inspiration from a variety of new developments in topology, Riemannian geometry, mathematical physics, and complex geometry, a natural extension of Ricci curvature has emerged which incorporates torsion. Attendant to this are natural generalizations of Einstein metrics and Ricci flow. The research project aims at uncovering fundamental geometric and analytic aspects of the generalized Ricci curvature, generalized Einstein metrics, and generalized Ricci flow, ultimately building towards uniformization and classification results with further applications to differential geometry, PDE, complex manifolds, and mathematical physics. The award will aid the training of students at the undergraduate and graduate levels, through outreach activities, by incorporating them in research projects, and through professional training programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何在数学、物理和其他科学学科的不同领域中起着基础性的作用。 在我们的现代几何方法中,一个中心的和深入研究的概念是“曲率”。 揭示曲率的现代定义在世纪前爱因斯坦相对论的发展中发挥了关键作用。 另一方面,“挠”的概念是几何学中一个不太清楚的部分,尽管它同样重要。 该项目将支持自然包含扭转的几何结构的基础研究,旨在数学和物理学中的新应用。 除了支持研究,该奖项将支持本科生和研究生的各种培训计划。 这包括指导本科生为研究生学习做准备,以及为研究生提供专业培训和指导。 由于加州大学欧文分校是全国公认的具有多元化的学生群体,这项培训将支持所有高等教育水平的包容性卓越目标。里奇曲率,爱因斯坦度量和里奇流在我们对几何和分析的理解中发挥着核心,必不可少的作用,深刻影响了我们对各种学科的理解,如热核,布朗运动,偏微分方程,低维拓扑、复几何、代数几何等等。 从拓扑学、黎曼几何、数学物理和复几何的各种新发展中获得灵感,出现了包含挠率的里奇曲率的自然延伸。 随之而来的是爱因斯坦度量和里奇流的自然推广。 该研究项目旨在揭示广义里奇曲率,广义爱因斯坦度量和广义里奇流的基本几何和分析方面,最终建立均匀化和分类结果,并进一步应用于微分几何,PDE,复流形和数学物理。 该奖项将通过推广活动、将学生纳入研究项目以及专业培训计划来帮助本科生和研究生的培训。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalar Curvature, Entropy, and Generalized Ricci Flow
Bochner formulas, functional inequalities and generalized Ricci flow
Bochner 公式、函数不等式和广义 Ricci 流
  • DOI:
    10.1016/j.jfa.2023.109901
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Kopfer, Eva;Streets, Jeffrey
  • 通讯作者:
    Streets, Jeffrey
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Streets其他文献

Kähler Stability of Symplectic Forms
  • DOI:
    10.1007/s12220-022-01036-5
  • 发表时间:
    2022-09-22
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Jeffrey Streets;Gang Tian
  • 通讯作者:
    Gang Tian

Jeffrey Streets的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Streets', 18)}}的其他基金

CAREER: Geometric flows and four-dimensional geometry
职业:几何流和四维几何
  • 批准号:
    1454854
  • 财政年份:
    2015
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Continuing Grant
Geometric flows and four-dimensional geometry
几何流和四维几何
  • 批准号:
    1301864
  • 财政年份:
    2013
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Geometric Flows and Four-dimensional Geometry
几何流和四维几何
  • 批准号:
    1201569
  • 财政年份:
    2011
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Geometric Flows and Four-dimensional Geometry
几何流和四维几何
  • 批准号:
    1006505
  • 财政年份:
    2010
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0703660
  • 财政年份:
    2007
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Fellowship

相似海外基金

CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Continuing Grant
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the mechanosensitive interplays between genetic control and self-organisation during the emergence of cardiac tissue curvature
研究心脏组织曲率出现过程中遗传控制和自组织之间的机械敏感性相互作用
  • 批准号:
    BB/Y00566X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Research Grant
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
  • 批准号:
    23H00085
  • 财政年份:
    2023
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
  • 批准号:
    23K03212
  • 财政年份:
    2023
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
  • 批准号:
    EP/W014807/2
  • 财政年份:
    2023
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Research Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
  • 批准号:
    2308839
  • 财政年份:
    2023
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Electrotunable and Curvature-Dependent Friction at Nanoscale Contacts Lubricated by Ionic Liquids
合作研究:离子液体润滑纳米级接触处的电可调和曲率相关摩擦
  • 批准号:
    2216162
  • 财政年份:
    2023
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
Spaces with Ricci curvature bounded below
具有下界的里奇曲率空间
  • 批准号:
    2304698
  • 财政年份:
    2023
  • 资助金额:
    $ 20.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了