Topology and combinatorics of arrangements

排列的拓扑和组合

基本信息

  • 批准号:
    2204299
  • 负责人:
  • 金额:
    $ 18.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The theory of arrangements has connections to various fields of mathematics and beyond, from algebraic and geometric topology, algebraic geometry, and combinatorics to applied topology, physics, and engineering. This award supports research on nonlinear arrangements and on elucidating the topological implications of the associated combinatorial data. The mentoring, organizational, and outreach activities of the PI will impact the education of undergraduate and graduate students and support the participation and advancement of women and other underrepresented groups in the STEM fields. The project is jointly funded by Topology and the Established Program to Stimulate Competitive Research (EPSCoR).A central theme in arrangement theory is the interplay between the topology of the complement to a family of submanifolds in a given space and the combinatorics of its intersection data. While there are considerable developments in the case of an arrangement of hyperplanes in a vector space, there has been a recent surge of activity on nonlinear arrangements. This project explores new directions and develops new techniques in the study of arrangements, especially arrangements of hypersurfaces in a complex torus or a product of elliptic curves. This involves using ideas motivated by topology and algebraic geometry to generalize tools from matroid theory, and then applying this combinatorial framework to study topological invariants of arrangement complements and configuration spaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
排列理论与数学的各个领域以及其他领域都有联系,从代数和几何拓扑学、代数几何学、组合学到应用拓扑学、物理学和工程学。该奖项支持非线性排列和阐明相关组合数据的拓扑含义的研究。PI的指导,组织和推广活动将影响本科生和研究生的教育,并支持妇女和其他代表性不足的群体在STEM领域的参与和进步。该项目由拓扑学和刺激竞争研究的既定计划(EPSCoR)共同资助。排列理论的一个中心主题是给定空间中一族子流形的补拓扑与其相交数据的组合学之间的相互作用。虽然在向量空间中的超平面的安排的情况下有相当大的发展,但最近非线性安排的活动激增。该项目探索了新的方向,并开发了新的技术,在研究安排,特别是安排超曲面在一个复杂的环面或产品的椭圆曲线。这涉及到利用拓扑和代数几何的思想,从拟阵理论中推广工具,然后应用这种组合框架来研究排列补数和配置空间的拓扑不变量。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christin Bibby其他文献

Christin Bibby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Research Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Standard Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Standard Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Standard Grant
Conference: Additive Combinatorics 2024
会议:加性组合学 2024
  • 批准号:
    2418414
  • 财政年份:
    2024
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
  • 批准号:
    2415358
  • 财政年份:
    2024
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
  • 批准号:
    2348525
  • 财政年份:
    2024
  • 资助金额:
    $ 18.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了