Knots, Disks, and Exotic Phenomena in Dimension 4
第 4 维中的结、圆盘和奇异现象
基本信息
- 批准号:2204349
- 负责人:
- 金额:$ 21.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Manifolds are objects which look locally simple but can have interesting global shape and properties. A guiding question in the field of topology is the classification, up to a given notion of equivalence, of all possible manifolds in a fixed dimension. Long-standing open questions concern the detection of exotic pairs in dimension 4. These are manifolds which are homeomorphic but not diffeomorphic, meaning that they are only distinguished by a very fine notion of equivalence. Techniques going back to Fox and Milnor and recently extended by Marengon, Manolescu and Piccirillo demonstrate that exotic pairs can be identified by using certain properties of knots, or entangled circles, which lie in the boundary of a 4-manifold after removing an open ball. The PI will explore this paradigm, which has the potential to lead to a fundamental shift in our ability to distinguish smooth 4-dimensional manifolds. An additional set of goals concerns studying the properties of knots in their own right, where certain old questions can be attacked by combinatorial tools introduced by the PI along with Blair and others. Overall, the development of these methods can have a lasting impact on the field of topology and on the applied sciences it informs, such as signal processing, data science and control theory, where manifolds appear in many guises - for one example, as state spaces of dynamical systems. The PI is also engaged in creating education and research opportunities for underrepresented communities. The PI will continue a program to employ combinatorial tools to address open questions in topology; her approach will provide graduate and advanced undergraduate students with an entry point to cutting-edge research in the field.The project outlines paths toward several distinct goals in low-dimensional topology for which the interaction between algebraic and geometric phenomena is the unifying principle; in which a combinatorial approach has proven effective; and in which knots in the 3-sphere and surfaces embedded in 4-manifolds are a central object of interest. Specific problems the PI will study include the Meridional Rank Conjecture of Cappell and Shaneson, the Slice-Ribbon Conjecture of Fox and Milnor and applications of knot theory to the detection of exotic smooth structures in dimension 4. The PI will employ state of the art tools, several of which she has previously helped develop and apply. The tools include: Coxeter quotients of knot groups; the Wirtinger number of a knot diagram; trisections of 4-manifolds; singular branched covers in dimension 4 and a ribbon obstruction extracted by the PI and collaborators from this context.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流形是看起来局部简单但可以具有有趣的全局形状和属性的对象。拓扑学领域的一个指导性问题是在给定的等价概念下,对固定维中所有可能的流形进行分类。长期存在的悬而未决的问题涉及第四维度中奇异对的检测。这些流形是同胚的,但不是非同胚的,这意味着它们只能通过一个非常精细的等价概念来区分。技术可以追溯到福克斯和米尔诺,最近由Marengon,Manolescu和Piccirillo扩展,证明可以通过使用结或纠缠圆的某些性质来识别奇异对,这些结或纠缠圆位于4-流形的边界上。PI将探索这种范式,它有可能导致我们区分光滑四维流形的能力发生根本性的转变。另外一组目标涉及研究结本身的性质,其中某些老问题可以通过PI沿着Blair等人引入的组合工具来解决。总体而言,这些方法的发展可以对拓扑学领域及其所告知的应用科学产生持久的影响,例如信号处理,数据科学和控制理论,其中流形以多种形式出现-例如,作为动力系统的状态空间。PI还致力于为代表性不足的社区创造教育和研究机会。PI将继续一个项目,采用组合工具来解决拓扑学中的开放问题;她的方法将为研究生和高年级本科生提供该领域前沿研究的切入点。该项目概述了通往低维拓扑学几个不同目标的道路,其中代数和几何现象之间的相互作用是统一的原则;其中组合方法已被证明是有效的;并且其中3-球面中的结和嵌入4-流形中的表面是感兴趣的中心对象。PI将研究的具体问题包括Cappell和Shaneson的子午线秩猜想,Fox和Milnor的切片丝带猜想以及结理论在4维奇异光滑结构检测中的应用。PI将使用最先进的工具,其中一些工具是她之前帮助开发和应用的。这些工具包括:结群的Coxeter数;结图的Wirtinger数; 4-流形的三等分; PI和合作者从这一背景下提取的4维奇异分支覆盖和带状障碍。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexandra Kjuchukova其他文献
Brunnian Exotic Surface Links in the 4-Ball
布伦尼亚 4 号球球场中的异国表面林克斯
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Kyle Hayden;Alexandra Kjuchukova;Sri Krishna;Maggie Miller;Mark Powell;Nathan Sunukjian - 通讯作者:
Nathan Sunukjian
On the classification of irregular dihedral branched covers of topological four-manifolds
拓扑四流形不规则二面分支覆盖的分类
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Alexandra Kjuchukova - 通讯作者:
Alexandra Kjuchukova
Linking in Cyclic Branched Covers and Satellite (non)-Homomorphisms
循环分支覆盖和卫星(非)同态中的链接
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
P. Cahn;Alexandra Kjuchukova - 通讯作者:
Alexandra Kjuchukova
Symmetric quotients of knot groups and a filtration of the Gordian graph
结群的对称商和 Gordian 图的过滤
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0.8
- 作者:
S. Baader;Alexandra Kjuchukova - 通讯作者:
Alexandra Kjuchukova
Slicing knots in definite 4-manifolds
在确定的 4 流形中切割结
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Alexandra Kjuchukova;Allison N. Miller;Arunima Ray;Sumeyra Sakalli - 通讯作者:
Sumeyra Sakalli
Alexandra Kjuchukova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexandra Kjuchukova', 18)}}的其他基金
CDS&E: Collaborative Research: Data-driven methods in classical knot theory
CDS
- 批准号:
1821257 - 财政年份:2018
- 资助金额:
$ 21.59万 - 项目类别:
Continuing Grant
相似国自然基金
Accretion variability and its consequences: from protostars to planet-forming disks
- 批准号:12173003
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
GEPOD: Global Evolution of Planet-fOrming Disks
GEPOD:行星形成盘的全球演化
- 批准号:
EP/Y014383/1 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Research Grant
Collaborative Research: Exploring the Compositions of Exoplanetary Systems with Observations and Modeling of Dusty Circumstellar Disks
合作研究:通过尘埃环星盘的观测和建模探索系外行星系统的组成
- 批准号:
2307613 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Standard Grant
Collaborative Research: Exploring the Compositions of Exoplanetary Systems with Observations and Modeling of Dusty Circumstellar Disks
合作研究:通过尘埃环星盘的观测和建模探索系外行星系统的组成
- 批准号:
2307612 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Standard Grant
Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
- 批准号:
2308839 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Standard Grant
Magnetohydrodynamic Simulations Revealing Formation Process of Terrestrial Planets in Protoplanetary Disks
磁流体动力学模拟揭示了原行星盘中类地行星的形成过程
- 批准号:
22KJ0155 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Revealing dust growth in protoplanetary disks from ALMA observations
ALMA 观测揭示原行星盘中尘埃的生长
- 批准号:
22KJ1435 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
RUI: Vertical Structure of Gas and Dust in Debris Disks
RUI:碎片盘中气体和灰尘的垂直结构
- 批准号:
2307920 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Standard Grant
The Astrochemical Legacy of Molecular Clouds to Protoplanetary Disks
分子云对原行星盘的天体化学遗产
- 批准号:
2893415 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Studentship
Evolution of the radial and vertical distribution of protoplanetary disks from scattered-light observations
散射光观测中原行星盘径向和垂直分布的演化
- 批准号:
2859987 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Studentship
Constructing the theory of rocky planet formation in cold protoplanetary disks
构建冷原行星盘中岩石行星形成的理论
- 批准号:
23H01227 - 财政年份:2023
- 资助金额:
$ 21.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




