Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
基本信息
- 批准号:2204657
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The world's digital data increases immensely each year. By 2025, it will reach 175 Zettabytes (ZB). Most human activities are recorded in digital format today. However, data recorded in digital media cannot last very long. Therefore, valuable data cannot be preserved today with our current storage technologies and devices for a long duration (beyond 15 years). The capacity of existing storage media cannot keep up with the growth of the amount of digital data. Also, all storage devices could become obsolete within several years, so the data stored are vulnerable as they perish as time goes by. Therefore, synthetic deoxyribonucleic acid (DNA) becomes an attractive alternative storage medium due to its high density and long durability. These characteristics of DNA storage make it a great candidate for archival storage. However, the preliminary study of the project indicates the practical DNA storage tube capacity based on current technologies is only around 250GB, which is much less than the expected capacity. The major reason is that primer-payload collisions in DNA storage can drastically reduce the number of usable primers in a tube as the data payload size increases. The use of primers is essential for random access to DNA data. In this project, an interdisciplinary team is formed to investigate both bio and storage approaches that can improve the scalability of DNA storage. Among the many factors that can scale up DNA storage, the project plans to investigate the following questions: 1) How to identify more primers for a primer library to be used in DNA storage? 2) Given a primer library, how to efficiently allocate payload data to avoid primer-payload collisions to increase DNA storage capacity? and 3) How to effectively use a popular technique called data deduplication in data backup applications to further increase the storage capability of DNA storage? With a deep understanding of molecular biology and computer storage technologies and systems, this interdisciplinary team fosters several innovative ways of understanding the fundamental issues of DNA storage and will develop necessary genome engineering, sequencing techniques, software, and new algorithms to optimize the process of converting the world's digital data to DNA storage for archiving and preserving today's valuable digital data for hundreds of years in the future. The goal of storing the world's digital data in DNA storage to preserve all human activities can move one step closer with this project. The potential research outcomes of the project include fostering the advancement of bioscience and storage technologies, preserving human activities in DNA storage for hundreds of years, and facilitating fundamental understanding, identifying tradeoffs, and creating efficient ways of scaling up DNA storage. The project will provide an ideal inter-disciplinary thinking, hands-on learning, and development environment to teach computer science and electrical and computer engineering graduate and undergraduate students important system building and experimental skills that are critical for today's and the future IT workforce. The research outcomes of the project will be incorporated into the classroom teaching of the team members, for both class projects and the core courses in computer science and electrical and computer engineering. The team plans to include the obtained research results in a new course on Storage Technologies /Systems for Big Data for students in a Data Science Program, as well as in undergraduate senior design and directed research studies. The team plans to disseminate the research advances to industrial collaborators, and through publications, presentations, and public release of research data, software tools, and prototype systems to the research community. The team is committed to recruiting underrepresented undergraduate and graduate students to the project. Research results will be made quickly available to the general public and disseminated via websites and open source repositories like GitHub.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
世界上的数字数据每年都在极大地增加。到2025年,它将达到175 ZB。今天,大多数人类活动都是以数字格式记录的。然而,记录在数字媒体中的数据不能持续很长时间。因此,使用我们当前的存储技术和设备无法长期(超过15年)保存有价值的数据。现有存储介质的容量跟不上数字数据量的增长。此外,所有存储设备都可能在几年内过时,因此存储的数据随着时间的推移而消失,很容易受到攻击。因此,人工合成的脱氧核糖核酸(DNA)因其高密度和耐久性成为一种有吸引力的替代存储介质。DNA存储的这些特点使其成为档案存储的极佳候选者。然而,该项目的初步研究表明,基于现有技术的实际DNA存储管容量仅为250 GB左右,远远低于预期容量。主要原因是DNA存储中的引物-有效载荷碰撞会随着数据有效载荷大小的增加而大幅减少试管中可用的引物数量。对随机获取DNA数据来说,使用引物是必不可少的。在这个项目中,成立了一个跨学科的团队来研究生物和存储方法,以提高DNA存储的可扩展性。在扩大DNA存储的众多因素中,该项目计划研究以下问题:1)如何为用于DNA存储的引物库确定更多的引物?2)给定一个引物库,如何有效地分配有效载荷数据以避免引物-有效载荷碰撞以增加DNA存储容量?以及3)如何在数据备份应用中有效地使用一种名为重复数据删除的流行技术,以进一步提高DNA存储的存储能力?凭借对分子生物学和计算机存储技术和系统的深入了解,这个跨学科团队培养了几种了解DNA存储基本问题的创新方法,并将开发必要的基因组工程、测序技术、软件和新算法,以优化将世界上的数字数据转换为DNA存储的过程,以便在未来数百年存档和保存今天有价值的数字数据。将世界上的数字数据存储在DNA存储中以保护所有人类活动的目标可以通过这个项目更近一步。该项目的潜在研究成果包括促进生物科学和存储技术的进步,将人类在DNA存储中的活动保存数百年,促进基本了解,确定权衡,并创造扩大DNA存储的有效方法。该项目将提供一个理想的跨学科思维、实践学习和开发环境,向计算机科学、电气和计算机工程研究生和本科生传授对今天和未来的IT劳动力至关重要的重要系统建设和实验技能。该项目的研究成果将被纳入团队成员的课堂教学,包括课堂项目和计算机科学、电气和计算机工程的核心课程。该团队计划将获得的研究成果纳入面向数据科学项目学生的关于大数据存储技术/系统的新课程,以及本科高级设计和指导性研究学习。该团队计划向行业合作者传播研究进展,并通过出版物、演示文稿和向研究界公开发布研究数据、软件工具和原型系统来传播研究进展。该团队致力于招募人数不足的本科生和研究生加入该项目。研究成果将迅速提供给公众,并通过网站和像GitHub这样的开源资源库进行传播。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Work-in-Progress: ExpCache: Online-Learning based Cache Replacement Policy for Non-Volatile Memory
正在进行中的工作:ExpCache:基于在线学习的非易失性内存缓存替换策略
- DOI:10.1109/cases55004.2022.00010
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yang, Jinfeng;Li, Bingzhe;Yuan, Jianjun;Shen, Zhaoyan;Du, David;Lilja, David
- 通讯作者:Lilja, David
Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems
- DOI:10.1109/nas55553.2022.9925545
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Milan M. Shetti;Bingzhe Li;D. Du
- 通讯作者:Milan M. Shetti;Bingzhe Li;D. Du
HL-DNA: A Hybrid Lossy/Lossless Encoding Scheme to Enhance DNA Storage Density and Robustness for Images
HL-DNA:一种增强图像 DNA 存储密度和鲁棒性的有损/无损混合编码方案
- DOI:10.1109/iccd56317.2022.00071
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Yi;Du, David H.C.;Ou, Li;Li, Bingzhe
- 通讯作者:Li, Bingzhe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bingzhe Li其他文献
An FPGA implementation of a Restricted Boltzmann Machine classifier using stochastic bit streams
使用随机比特流的受限玻尔兹曼机分类器的 FPGA 实现
- DOI:
10.1109/asap.2015.7245709 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Bingzhe Li;M. Najafi;D. Lilja - 通讯作者:
D. Lilja
NetStorage: A synchronized trace-driven replayer for network-storage system evaluation
NetStorage:用于网络存储系统评估的同步跟踪驱动重放器
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Bingzhe Li;Hao Wen;F. Toussi;C. Anderson;Bernard A. King;D. Lilja;D. Du - 通讯作者:
D. Du
Low Cost Hybrid Spin-CMOS Compressor for Stochastic Neural Networks
用于随机神经网络的低成本混合自旋 CMOS 压缩器
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Bingzhe Li;Jiaxi Hu;M. Najafi;S. Koester;David J. Lilja - 通讯作者:
David J. Lilja
BSC: Block-based Stochastic Computing to Enable Accurate and Efficient TinyML
BSC:基于块的随机计算实现准确高效的 TinyML
- DOI:
10.1109/asp-dac52403.2022.9712585 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Yuhong Song;E. Sha;Qingfeng Zhuge;Rui Xu;Yong;Bingzhe Li;Lei Yang - 通讯作者:
Lei Yang
DNA Storage: A Promising Large Scale Archival Storage?
DNA 存储:一种有前途的大规模档案存储?
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yixun Wei;Bingzhe Li;D. Du - 通讯作者:
D. Du
Bingzhe Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bingzhe Li', 18)}}的其他基金
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SHF: Small: Exploring and Enhancing Capabilities of Emerging Hybrid/Convertible Solid-State Drives
SHF:小型:探索和增强新兴混合/可转换固态硬盘的功能
- 批准号:
2413520 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SHF: Small: Exploring and Enhancing Capabilities of Emerging Hybrid/Convertible Solid-State Drives
SHF:小型:探索和增强新兴混合/可转换固态硬盘的功能
- 批准号:
2208317 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant