SCH: Neonatal Facial Coding for Pain Recognition Monitoring System (PRAMS)

SCH:新生儿面部编码疼痛识别监测系统 (PRAMS)

基本信息

项目摘要

Pain affects over 15 million hospitalized babies annually. Early-life pain is associated with abnormal structural and functional brain development and results in adverse consequences, including cognitive impairments, altered emotional functioning, psychopathologies, and global pain sensitivity. Using facial expressions associated with brain-based evidence of pain, nurses only agree to the presence of babies’ pain 67-87% of the time. Thus, the inability to self-report pain makes babies vulnerable to under- and over-treatment of pain. The investigators created and pediatric nurses validated, a preliminary artificial intelligence (AI)-empowered pain classification model based on facial actions from a video dataset of newborn pain. This model provides 94% accuracy, 93% precision, and 95% recall in analyses of a small sample of babies. This model is not robust enough to be deployed for continuous pain assessment until it can be fully developed with a large sample of diverse babies. This project is being integrated into educational activities offered by the investigators, including the first massive open online course based on federated learning (FL) concepts and algorithms. The goal of this program of research is to advance the creation of an automated Pain Recognition AI-empowered Monitoring System (PRAMS) grounded by biological evidence of pain and supervised by nurses-in-the loop. A novel hybrid FL approach is being tested by using a diverse pain assessment dataset that is being created from time-series facial action video, physiological and clinical data of more than 200 babies before and after surgery in eight patient care units; thus, simulating inter-hospital distributed learning. Mathematical proof that this novel hybrid FL approach has advantageous convergence characteristics in convex learning problems is being provided to establish in the future similar convergence bounds for non-convex optimization. This project has great potential to advance the development of machine learning algorithms across heterogeneous datasets in a privacy-preserving FL approach that could leverage the statistical power of multi-site data to learn clinically meaningful features of even rare conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
疼痛每年影响超过1500万住院婴儿。早期疼痛与大脑结构和功能发育异常有关,并导致不良后果,包括认知障碍、情感功能改变、精神病理学和整体疼痛敏感性。使用与基于大脑的疼痛证据相关的面部表情,护士只同意67-87%的婴儿疼痛的存在。因此,无法自我报告疼痛使婴儿容易受到疼痛治疗不足和过度的影响。研究人员创建并验证了一个初步的人工智能(AI)授权的疼痛分类模型,该模型基于新生儿疼痛视频数据集的面部动作。该模型在对小样本婴儿的分析中提供了94%的准确率,93%的精确率和95%的召回率。该模型不够强大,无法用于持续的疼痛评估,直到它可以用大量不同的婴儿样本完全开发出来。该项目正在被整合到研究人员提供的教育活动中,包括第一个基于联邦学习(FL)概念和算法的大规模开放式在线课程。这项研究计划的目标是推进创建一个自动化的疼痛识别AI授权监测系统(PRAMS),该系统以疼痛的生物学证据为基础,并由护士在环监督。一种新的混合FL方法正在通过使用不同的疼痛评估数据集进行测试,该数据集是从八个病人护理单位手术前后的200多名婴儿的时间序列面部动作视频,生理和临床数据中创建的;因此,模拟医院间的分布式学习。数学证明,这种新的混合FL方法具有有利的收敛特性,在凸学习问题正在提供建立在未来类似的收敛范围为非凸优化。该项目具有很大的潜力,可以在保护隐私的FL方法中推动跨异构数据集的机器学习算法的开发,该方法可以利用多站点数据的统计能力来学习即使是罕见情况下也有临床意义的特征。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RENEE MANWORREN其他文献

RENEE MANWORREN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Gut immunity: Unraveling Mechanisms and Strategies for Neonatal Intestinal Disorder
肠道免疫:揭示新生儿肠道疾病的机制和策略
  • 批准号:
    502588
  • 财政年份:
    2024
  • 资助金额:
    $ 119.98万
  • 项目类别:
Elucidation of metabolic control mechanism by FGF21-mediated central nervous system signaling in neonatal period
阐明新生儿期 FGF21 介导的中枢神经系统信号传导的代谢控制机制
  • 批准号:
    23K10836
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The impact of maternal lifestyle and psychosocial factors on neonatal birth weight in Sri Lanka
斯里兰卡母亲生活方式和社会心理因素对新生儿出生体重的影响
  • 批准号:
    22KF0122
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Targeting Ryanodine Receptor 2 for Treating Neonatal Hypoxic-ischemic Brain Injury (HIBI)
靶向 Ryanodine 受体 2 治疗新生儿缺氧缺血性脑损伤 (HIBI)
  • 批准号:
    488816
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Operating Grants
A voice to the voiceless: Longitudinal patient-reported outcomes, experiences, social determinants of health and health services utilization after major neonatal surgery
向无声者发出声音:重大新生儿手术后患者纵向报告的结果、经历、健康和卫生服务利用的社会决定因素
  • 批准号:
    478053
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Operating Grants
Range of protein induced by vitamin K absence or antagonist-II levels in neonates at birth and identification of risk factors for neonatal vitamin K deficiency
新生儿出生时维生素 K 缺乏或拮抗剂 II 水平诱导的蛋白质范围以及新生儿维生素 K 缺乏的危险因素的识别
  • 批准号:
    23K14949
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Sex-specific Impact of Prenatal Opioids on Brain Reward Signaling and Neonatal Feeding Regulation
产前阿片类药物对大脑奖赏信号和新生儿喂养调节的性别特异性影响
  • 批准号:
    10506345
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
Aire-dependent thymic B-1a cells play a key role in neonatal tolerance induction
Aire 依赖性胸腺 B-1a 细胞在新生儿耐受诱导中发挥关键作用
  • 批准号:
    10660882
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
Optimal Oxygenation in Neonatal Lung Injury
新生儿肺损伤的最佳氧合
  • 批准号:
    10734639
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 119.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了