Invariant Theory and Imaging
不变理论与成像
基本信息
- 批准号:2205626
- 负责人:
- 金额:$ 21.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to investigate the mathematical foundations of four important methods in imaging and optics: X-ray crystallography, Cryogenic electron microscopy (Cryo-EM), ptychography, and ultra-short pulse detection. Although X-ray crystallography is the prevalent method for determining the 3-dimensional atomic structure of molecules, the mathematical foundations of this theory are not fully developed. Cryo-EM is a recent technique in biological imaging where a sample (typically a protein) is flash-frozen in a liquid solution and then directed with a low-intensity electron beam. Ptychography is a method of obtaining a high-resolution image by scanning across a sample with a moving mask. It can be applied in a number of contexts, including the imaging of live cells. Ultra-short pulse detection is a key ingredient in time-resolved ultrafast phenomena such as chemical reactions. This research will create a unified set of mathematical techniques to understand these methods. The development of these techniques will have the potential for a myriad of applications in areas as diverse as biochemistry, medicine, and engineering. This research will also provide a training opportunity for graduate students. This research will exploit techniques from invariant theory and algebraic geometry to build a mathematical framework for four methods in imaging and optics. X-ray crystallography corresponds to recovering a signal from its power spectrum. This is arguably the most challenging phase-retrieval problem. The first project aims to develop rigorous mathematical criteria to determine when a discrete periodic signal can be recovered from its power spectrum. Because cryo-EM measurements have a very high noise level, constructing a high-resolution image requires massive data. The second project will use techniques from invariant theory to estimate the sample complexity of cryo-EM and related experiments. Ptychographic measurements can be modeled using the short-time Fourier transform (STFT). The third project will obtain information-theoretic bounds on the number of STFT measurements needed for signal recovery. The last project will focus on the mathematical foundations of a novel technique for pulse characterization using multi-mode fibers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在研究成像和光学中四种重要方法的数学基础:X射线结晶学、低温电子显微镜(Cryo-EM)、薄层摄影术和超短脉冲检测。虽然X射线结晶学是确定分子三维原子结构的流行方法,但这一理论的数学基础还没有完全发展起来。冷冻-EM是一种最新的生物成像技术,即样品(通常是蛋白质)在液体溶液中闪速冷冻,然后用低强度电子束引导。平版印刷术是一种通过移动掩模扫描样本来获得高分辨率图像的方法。它可以应用在许多环境中,包括活细胞的成像。超短脉冲探测是化学反应等时间分辨超快现象的关键组成部分。这项研究将创建一套统一的数学技术来理解这些方法。这些技术的发展将在生物化学、医学和工程等领域具有广泛应用的潜力。本研究也将为研究生提供培训机会。这项研究将利用不变量理论和代数几何的技术,为成像和光学的四种方法建立一个数学框架。X射线结晶学相当于从其功率谱中恢复信号。这可以说是最具挑战性的相位恢复问题。第一个项目旨在制定严格的数学标准,以确定离散周期信号何时可以从其功率谱中恢复。由于低温电磁测量的噪声水平非常高,构建高分辨率图像需要大量数据。第二个项目将使用不变量理论中的技术来估计低温EM和相关实验的样本复杂性。可以使用短时傅立叶变换(STFT)对层析测量进行建模。第三个项目将获得信号恢复所需的短时傅立叶变换测量次数的信息论界限。最后一个项目将专注于一种使用多模光纤的脉冲表征新技术的数学基础。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Edidin其他文献
Equivariant intersection theory (With an Appendix by Angelo Vistoli: The Chow ring of M2)
等变相交理论(安杰洛·维斯特利附录:M2 的周环)
- DOI:
10.1007/s002220050214 - 发表时间:
1998-03-19 - 期刊:
- 影响因子:3.600
- 作者:
Dan Edidin;William Graham - 通讯作者:
William Graham
On a smoothness characterization for good moduli spaces
关于好的模空间的光滑性刻画
- DOI:
10.1016/j.aim.2024.109564 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:1.500
- 作者:
Dan Edidin;Matthew Satriano;Spencer Whitehead - 通讯作者:
Spencer Whitehead
Inertial Chow rings of toric stacks
- DOI:
10.1007/s00229-017-0982-z - 发表时间:
2017-11-02 - 期刊:
- 影响因子:0.600
- 作者:
Thomas Coleman;Dan Edidin - 通讯作者:
Dan Edidin
Dan Edidin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Edidin', 18)}}的其他基金
Theory and Application of Hilbert Space Frames
希尔伯特空间框架理论与应用
- 批准号:
1906725 - 财政年份:2019
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9306071 - 财政年份:1993
- 资助金额:
$ 21.99万 - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
New proximal algorithms for computational imaging: From optimisation theory to enhanced deep learning
计算成像的新近端算法:从优化理论到增强型深度学习
- 批准号:
EP/X028860/1 - 财政年份:2023
- 资助金额:
$ 21.99万 - 项目类别:
Research Grant
Theory and Algorithms for Compressive Imaging
压缩成像的理论和算法
- 批准号:
547869-2020 - 财政年份:2022
- 资助金额:
$ 21.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
- 批准号:
2212065 - 财政年份:2022
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
- 批准号:
2212066 - 财政年份:2022
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
CAREER: Reconciling Model-Based and Learning-Based Imaging: Theory, Algorithms, and Applications
职业:协调基于模型和基于学习的成像:理论、算法和应用
- 批准号:
2043134 - 财政年份:2021
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
Theory and Algorithms for Compressive Imaging
压缩成像的理论和算法
- 批准号:
547869-2020 - 财政年份:2021
- 资助金额:
$ 21.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Theory of Wavelets on Bounded Domains with Applications to Seismic Imaging
有界域上的小波理论及其在地震成像中的应用
- 批准号:
534939-2019 - 财政年份:2020
- 资助金额:
$ 21.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Theory and Algorithms for Compressive Imaging
压缩成像的理论和算法
- 批准号:
547869-2020 - 财政年份:2020
- 资助金额:
$ 21.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Mathematical analysis and inverse theory for seismic and medical imaging
地震和医学成像的数学分析和反演理论
- 批准号:
RGPIN-2015-06038 - 财政年份:2019
- 资助金额:
$ 21.99万 - 项目类别:
Discovery Grants Program - Individual
Theory of Wavelets on Bounded Domains with Applications to Seismic Imaging
有界域上的小波理论及其在地震成像中的应用
- 批准号:
534939-2019 - 财政年份:2019
- 资助金额:
$ 21.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral