Controlling Electron, Magnon, and Phonon States in Quasi-2D Antiferromagnetic Semiconductors for Enabling Novel Device Functionalities
控制准二维反铁磁半导体中的电子、磁子和声子态以实现新颖的器件功能
基本信息
- 批准号:2205973
- 负责人:
- 金额:$ 47.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical DescriptionThis research addresses the properties of a new class of ultra-thin quasi-two-dimensional semiconductors with intrinsic magnetic properties. The exotic properties of this new class of semiconductors make them particularly interesting for fundamental science research and practical applications. The investigators will explore the electronic, magnetic, and thermal properties of these unique materials with thicknesses of a few-atomic layers only. The PIs will also investigate the potential of these materials for use in devices with novel functionality that operate at high speed with low-energy dissipation. This research aligns with the Nation’s need for the development and research of novel semiconductor materials and devices under the recent CHIPS and Science Act. The interdisciplinary nature of the project will facilitate the involvement of students in the proposed research and contribute to undergraduate and graduate STEM education. The project team has developed a detailed Broadening Participation Plan that will impact the K-12, undergraduate, and graduate education of minorities underrepresented in STEM fields.Technical DescriptionTransition-metal phospho-trichalcogenides span a wide variety of compounds with different electronic, magnetic, and phonon properties. These materials are one of a few van der Waals layered structures which can have intrinsic antiferromagnetism, even at mono-layer thickness. The band gap of these materials varies from ~1.3 eV to ~3.5 eV based on the type of its transition- metal element. Theory suggests that the application of gate bias and strain can induce phase transitions in these materials, changing their properties. While electrical insulators and conductors with AFM spin order have been studied extensively, little is known experimentally about antiferromagnetic layered semiconductors. This project aims to investigate the electron, phonon, and magnon properties of these unique materials at single- and few-layer structures, and to assess the possibilities of controlling their properties for enabling novel device functionalities. To achieve these goals, various types of these compounds will be synthesized and characterized using cryogenic micro – Brillouin – Raman spectroscopy, and electrical and thermal transport measurements. The results of this interdisciplinary research will add to the core knowledge in several areas of material science and electrical engineering, thereby delivering a transformative impact for applications of antiferromagnetic layered semiconductors. The intellectual merit of this project include knowledge of phonon and magnon band structures, and their modification with the thickness, strain, and electric bias; experimental data for controlling the Néel temperature in two- dimensional antiferromagnetic semiconductor films; mechanisms and methods for tuning the phase transitions in AFM semiconductors under the action of gate and strain; innovative approaches for enabling novel device functionalities via control of the electron, phonon, and magnon states in two-dimensional antiferromagnetic semiconductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述本研究涉及一类新的超薄准二维半导体的性质与内在的磁性。这种新型半导体的奇异特性使它们对基础科学研究和实际应用特别感兴趣。研究人员将探索这些厚度仅为几个原子层的独特材料的电子,磁性和热特性。PI还将研究这些材料在具有新功能的设备中使用的潜力,这些设备以低能耗高速运行。这项研究符合国家根据最近的CHIPS和科学法案开发和研究新型半导体材料和器件的需求。该项目的跨学科性质将促进学生参与拟议的研究,并有助于本科和研究生STEM教育。项目团队已经制定了一个详细的扩大参与计划,这将影响K-12,本科生和研究生教育的少数民族在STEM领域代表性不足。技术说明过渡金属磷-三硫属化合物涵盖了各种各样的化合物,具有不同的电子,磁性和声子性质。这些材料是少数几种货车范德华层状结构中的一种,即使在单层厚度下也可以具有固有的反铁磁性。这些材料的带隙根据其过渡金属元素的类型从~ 1.3eV变化到~ 3.5eV。理论表明,栅极偏压和应变的应用可以诱导这些材料的相变,改变它们的特性。虽然AFM自旋序的电绝缘体和导体已经被广泛研究,但对反铁磁层状半导体的实验知之甚少。该项目旨在研究这些独特材料在单层和多层结构中的电子,声子和磁振子特性,并评估控制其特性以实现新器件功能的可能性。为了实现这些目标,将合成各种类型的这些化合物,并使用低温微布里渊-拉曼光谱以及电和热输运测量进行表征。这项跨学科研究的结果将增加材料科学和电气工程几个领域的核心知识,从而为反铁磁层状半导体的应用带来变革性的影响。该项目的智力价值包括声子和磁振子能带结构的知识,以及它们随厚度、应变和电偏压的变化,控制二维反铁磁半导体薄膜中Néel温度的实验数据,在栅极和应变作用下调节AFM半导体相变的机制和方法,通过控制电子,声子,和磁振子态该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识产权评估的支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fariborz Kargar其他文献
Advances in Brillouin–Mandelstam light-scattering spectroscopy
布里渊-曼德尔斯坦光散射光谱学的进展
- DOI:
10.1038/s41566-021-00836-5 - 发表时间:
2021-07-22 - 期刊:
- 影响因子:32.900
- 作者:
Fariborz Kargar;Alexander A. Balandin - 通讯作者:
Alexander A. Balandin
First-principles study of structural, electronic and optical properties of non-toxic RbBaX<math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si77.svg" display="inline" id="d1e1639" class="math"><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math> (X = F, Cl, Br, I) perovskites under hydrostatic pressure
- DOI:
10.1016/j.mssp.2024.109109 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:
- 作者:
Pranti Saha;In Jun Park;Protik Das;Fariborz Kargar - 通讯作者:
Fariborz Kargar
Fariborz Kargar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Muon--electron转换过程的实验研究
- 批准号:11335009
- 批准年份:2013
- 资助金额:360.0 万元
- 项目类别:重点项目
相似海外基金
Field emission scanning electron microscope
场发射扫描电子显微镜
- 批准号:
532701230 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Major Research Instrumentation
Scanning Transmission Electron Microscope for Beam-Sensitive Materials
用于光束敏感材料的扫描透射电子显微镜
- 批准号:
LE240100063 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Astroparticle Physics with a Trapped Electron
俘获电子的天体粒子物理学
- 批准号:
EP/Y036263/1 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Research Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Standard Grant
Contorted and Strained Molecular Nanographenes: Multi-Electron Storage and Reduction-Induced Transformations
扭曲和应变的分子纳米石墨烯:多电子存储和还原诱导的转变
- 批准号:
2404031 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Continuing Grant
CAREER: Photo-induced Ultrafast Electron-nuclear Dynamics in Molecules
职业:分子中光致超快电子核动力学
- 批准号:
2340570 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Continuing Grant
Intelligent cryo-electron microscopy of G protein-coupled receptors
G 蛋白偶联受体的智能冷冻电子显微镜
- 批准号:
23K23818 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
- 批准号:
2400727 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Standard Grant
CAS: Highly Interacting Panchromatic Push-Pull Systems: Symmetry Breaking and Quantum Coherence in Electron Transfer
CAS:高度交互的全色推拉系统:电子转移中的对称破缺和量子相干性
- 批准号:
2345836 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Standard Grant
CAREER: Connecting eukaryotic electron transfer components to nitrogenase using a bacterial chassis
职业:使用细菌底盘将真核电子传递组件连接到固氮酶
- 批准号:
2338085 - 财政年份:2024
- 资助金额:
$ 47.3万 - 项目类别:
Continuing Grant