Some Algorithmic Questions Related to the Mordell Conjecture

与莫德尔猜想相关的一些算法问题

基本信息

  • 批准号:
    2207189
  • 负责人:
  • 金额:
    $ 16.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Number theory is a fundamental branch of mathematics that deals with properties of the integers. Since ancient times, people have been interested in integer solutions to equations, called Diophantine equations; the Pythagorean equation, the Pell equation, and Fermat's Last Theorem are well-known problems of this type. In modern times, research has focused on general techniques for this sort of problem. A breakthrough result, proven by Faltings, shows that certain types of equations have only finitely many integer solutions. However, there is no known algorithm to find these solutions in general; algorithmic approaches to Diophantine equations are an active area of research. Surprisingly, this problem relates to many other areas in math, including algebraic geometry, complex analysis, Galois theory, and more. In order to compute solutions to Diophantine problems, we need to develop methods to perform some calculations in these other fields. This project involves studying several of these difficult computational problems.The goal of this project is to investigate various computational and algorithmic topics related to finiteness theorems in number theory. For example, a theorem of Faltings guarantees a polynomial equation of a certain type can have only finitely many rational solutions. (In geometric language, a curve of genus at least two can have only finitely many rational points.) All known proofs of Faltings's theorem are ineffective: one knows that the solutions are finite in number, but the proof provides no way to tell whether one has found them all. Recent work, including a new proof of Faltings's theorem by the PI and Venkatesh, has opened up promising new avenues toward an algorithmic solution. The PI will study algorithmic and computational questions in algebraic geometry and number theory, motivated by Faltings's theorem and other problems in algebraic and arithmetic geometry. The PI hopes to study algorithmic approaches to the Shafarevich conjecture (determining abelian varieties over a fixed number field, with good reduction away from a fixed finite set of bad primes) and the Riemann-Hilbert correspondence (finding algebraic differential equations with given monodromy representations). The Riemann-Hilbert correspondence, in turn, should be applicable to the problem of finding branched covers of curves, as well as the problem of studying variations of Hodge structure over a given base. Both these problems relate to Faltings's theorem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数论是数学的一个基本分支,主要研究整数的性质。自古以来,人们一直对丢番图方程的整数解感兴趣;毕达哥拉斯方程,佩尔方程和费马大定理都是这类著名的问题。在现代,研究集中在解决这类问题的一般技术上。一个突破性的结果,证明了法尔茅斯,表明某些类型的方程只有100多个整数解。然而,没有已知的算法来找到这些解决方案一般;丢番图方程的算法方法是一个活跃的研究领域。令人惊讶的是,这个问题与数学中的许多其他领域有关,包括代数几何,复分析,伽罗瓦理论等等。为了计算丢番图问题的解,我们需要开发一些方法来执行这些其他领域的计算。 这个项目涉及到研究这些困难的计算问题中的几个。这个项目的目标是研究与数论中的有限性定理相关的各种计算和算法主题。例如,一个定理的Faltings保证一个多项式方程的某种类型可以有只有1000多个合理的解决方案。(In用几何语言来说,亏格至少为2的曲线只能有1/2个有理点。所有已知的证明都是无效的:人们知道解的数量是有限的,但证明没有办法告诉人们是否已经找到了所有的解。最近的工作,包括PI和Venkatesh对Faltings定理的新证明,为算法解决方案开辟了充满希望的新途径。PI将学习代数几何和数论中的算法和计算问题,其动机是法尔亭定理和代数和算术几何中的其他问题。PI希望研究Shafarevich猜想(确定固定数域上的阿贝尔簇,从坏素数的固定有限集合中进行良好的约简)和Riemann-Hilbert对应(找到具有给定单值表示的代数微分方程)的算法方法。 反过来,黎曼-希尔伯特对应应该适用于寻找曲线的分支覆盖的问题,以及研究给定基上霍奇结构的变化的问题。这两个问题都涉及到Faltings定理。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Lawrence其他文献

Numerical Procedures for Grouping Students for Instruction.
对学生进行分组教学的数值程序。
  • DOI:
    10.1080/00011037.1979.11008251
  • 发表时间:
    1979
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Lawrence;D. W. Spuck
  • 通讯作者:
    D. W. Spuck
Local treatments and vacuum sealing as novel control strategies for stored seed pests in the tropics
  • DOI:
    10.1007/s13593-017-0415-0
  • 发表时间:
    2017-02-27
  • 期刊:
  • 影响因子:
    6.700
  • 作者:
    Brian Lawrence;Abram J. Bicksler;Kimberly Duncan
  • 通讯作者:
    Kimberly Duncan
A density result for real hyperelliptic curves
真实超椭圆曲线的密度结果
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Lawrence
  • 通讯作者:
    Brian Lawrence
Representations of surface groups with universally finite mapping class group orbit
具有普遍有限映射类群轨道的表面群的表示
  • DOI:
    10.4310/mrl.2022.v29.n6.a7
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Brian Lawrence;Daniel Litt
  • 通讯作者:
    Daniel Litt
Requirements Engineering
需求工程
  • DOI:
    10.1109/ms.1998.663780
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    D. Berry;Brian Lawrence
  • 通讯作者:
    Brian Lawrence

Brian Lawrence的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Lawrence', 18)}}的其他基金

Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
  • 批准号:
    2313466
  • 财政年份:
    2023
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
  • 批准号:
    2101985
  • 财政年份:
    2021
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
EAGER: MAKER: Promoting "Culturally Relevant Making" and Utilitarian Scientific Literacy to Increase Student Retention in Technology Rich Disciplines Brian Lawrence (PI), Lycurgus
EAGER:创客:促进“文化相关的制作”和功利主义科学素养,以提高学生在技术丰富的学科中的保留率 Brian Lawrence (PI),Lycurgus
  • 批准号:
    1723752
  • 财政年份:
    2017
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1705140
  • 财政年份:
    2017
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Fellowship Award
SBIR Phase II: Regenerating Ocular Surface Wounds with Novel Biomaterial
SBIR 第二阶段:用新型生物材料再生眼表伤口
  • 批准号:
    1152561
  • 财政年份:
    2012
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant

相似海外基金

AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
  • 批准号:
    2342244
  • 财政年份:
    2024
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Conference: ANTS XVI: Algorithmic Number Theory Symposium 2024
会议:ANTS XVI:算法数论研讨会 2024
  • 批准号:
    2401305
  • 财政年份:
    2024
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Standard Grant
Algorithmic topology in low dimensions
低维算法拓扑
  • 批准号:
    EP/Y004256/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Fellowship
Australian Experiences of Algorithmic Culture on TikTok
澳大利亚在 TikTok 上的算法文化体验
  • 批准号:
    DP240102939
  • 财政年份:
    2024
  • 资助金额:
    $ 16.49万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了