Collaborative Research: Modeling and Control of Non-Passive Networks with Distributed Time-Delays: Application in Epidemic Control
合作研究:分布式时滞非无源网络的建模与控制:在流行病控制中的应用
基本信息
- 批准号:2208182
- 负责人:
- 金额:$ 70.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research seeks to develop a comprehensive framework for data-driven control of large-scale networks where time delays and the corresponding complex behavior play a substantial role. An example of this situation is the ongoing COVID-19 pandemic, where these effects lead to ``reflective" spreading waves, resulting in hard to predict/control multiple phases of infection spread. To enhance pandemic preparedness and make healthcare systems and governments ready to optimally respond to potential future airborne epidemic disease, it is imperative to generate accurate network models of our connected society and disease spread. Using such realistic models, optimal control strategies can be synthesized that take into account the complex behavior caused by time delays in the network. This project will address this unmet need, which will have a significant social impact and can help stakeholders design strategies to manage a pandemic situation. Education is proactively integrated into this project at all levels, from outreach to pre-college students to graduate training. The strategy to broaden participation will leverage PIs’ connections to institutional resources and programs to help recruit students from underrepresented groups. Effective mitigation of pandemics spreading over networks requires: (a) unveiling the topology, dynamics and delays of the underlying network from experimental data; (b) use of this information to design networks that can robustly minimize the systemic effects of localized infection foci, while respecting overall minimum traffic constraints; and (c) synthesizing real-time optimal control laws that adjust local parameters to prevent the onset of delay-induced echoing waves of pandemic spread. This research seeks to achieve these objectives by embedding the problem into a more general one: data-driven control synthesis for networked systems in the presence of delay-induced non-minimum phase/non-passive behavior, in scenarios where the interconnection structure of the system may not be perfectly known a priori. This embedding allows for exploiting a rich knowledge base, ranging from non-linear identification and semi-algebraic optimization to passivity-based control of networks, leading to a computationally tractable framework. Topology identification will be accomplished through an atomic norm framework. Network synthesis will combine ideas from network control and occupation measures to design and maintain optimal topologies at a slow time scale. Real-time optimal control laws will use event-triggered passivation to prevent delay-induced instabilities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究旨在开发一个全面的框架,用于大规模网络的数据驱动控制,其中时间延迟和相应的复杂行为起着重要作用。这种情况的一个例子是正在进行的COVID-19大流行,这些影响导致“反射”传播波,导致难以预测/控制感染传播的多个阶段。为了加强大流行的防范,并使卫生保健系统和政府做好准备,以最佳方式应对未来可能通过空气传播的流行病,必须生成我们相互联系的社会和疾病传播的准确网络模型。利用这种现实模型,可以综合考虑网络中由时滞引起的复杂行为的最优控制策略。该项目将解决这一未满足的需求,这将产生重大的社会影响,并可以帮助利益攸关方制定战略,以管理大流行局势。从外联到大学预科学生再到研究生培训,教育在各个层面都被积极融入该项目。扩大参与的战略将利用私人学院与机构资源和项目的联系,帮助从代表性不足的群体中招收学生。有效减缓大流行病在网络上的传播需要:(a)从实验数据中揭示基础网络的拓扑结构、动态和延迟;(b)利用这些信息设计网络,在尊重总体最小交通限制的同时,将局部感染焦点的系统影响稳健地降至最低;(c)综合实时最优控制律,调整局部参数,防止延迟引起的大流行传播回声波的出现。本研究试图通过将问题嵌入到更一般的问题中来实现这些目标:在系统互连结构可能不完全先验的情况下,存在延迟诱导的非最小相位/非被动行为的网络系统的数据驱动控制综合。这种嵌入允许利用丰富的知识库,从非线性识别和半代数优化到基于被动的网络控制,从而形成一个计算可处理的框架。拓扑识别将通过原子规范框架完成。网络综合将结合网络控制和占用措施的思想,在缓慢的时间尺度上设计和维护最佳拓扑。实时最优控制律将使用事件触发的钝化来防止延迟引起的不稳定性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bounding the Distance to Unsafe Sets With Convex Optimization
- DOI:10.1109/tac.2023.3285862
- 发表时间:2021-10
- 期刊:
- 影响因子:6.8
- 作者:Jared Miller;M. Sznaier
- 通讯作者:Jared Miller;M. Sznaier
Bounding the Distance of Closest Approach to Unsafe Sets with Occupation Measures
用占用措施限制最接近不安全集的距离
- DOI:10.1109/cdc51059.2022.9992817
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Miller, Jared;Sznaier, Mario
- 通讯作者:Sznaier, Mario
Data-Driven Superstabilizing Control of Error-in-Variables Discrete-Time Linear Systems
变量误差离散时间线性系统的数据驱动超稳定控制
- DOI:10.1109/cdc51059.2022.9992363
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Miller, Jared;Dai, Tianyu;Sznaier, Mario
- 通讯作者:Sznaier, Mario
Robust Data-Driven Safe Control Using Density Functions
使用密度函数的稳健数据驱动安全控制
- DOI:10.1109/lcsys.2023.3287801
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:Zheng, Jian;Dai, Tianyu;Miller, Jared;Sznaier, Mario
- 通讯作者:Sznaier, Mario
Edge Selections in Bilinear Dynamic Networks
双线性动态网络中的边选择
- DOI:10.1109/tac.2023.3269323
- 发表时间:2023
- 期刊:
- 影响因子:6.8
- 作者:de Oliveira, Arthur Castello;Siami, Milad;Sontag, Eduardo D.
- 通讯作者:Sontag, Eduardo D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milad Siami其他文献
Oscillations in fractional order LTI systems: Harmonic analysis and further results
分数阶 LTI 系统中的振荡:谐波分析和进一步结果
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:4.4
- 作者:
Milad Siami;M. Tavazoei - 通讯作者:
M. Tavazoei
A Separation Principle for Joint Sensor and Actuator Scheduling with Guaranteed Performance Bounds
具有保证性能界限的联合传感器和执行器调度的分离原则
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Milad Siami;A. Jadbabaie - 通讯作者:
A. Jadbabaie
Exploring Non-Submodular Scheduling for Large-Scale Sensor Networks
探索大规模传感器网络的非子模块调度
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3
- 作者:
Reza Vafaee;Milad Siami - 通讯作者:
Milad Siami
Stability and Robustness Analysis of Commensurate Fractional-Order Networks
- DOI:
10.1109/tcns.2021.3061931 - 发表时间:
2020-11 - 期刊:
- 影响因子:4.2
- 作者:
Milad Siami - 通讯作者:
Milad Siami
Deterministic Polynomial-Time Actuator Scheduling With Guaranteed Performance
具有保证性能的确定性多项式时间执行器调度
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Milad Siami;A. Jadbabaie - 通讯作者:
A. Jadbabaie
Milad Siami的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milad Siami', 18)}}的其他基金
Sparse Sensing, Actuation, and Communication in Complex Networks
复杂网络中的稀疏传感、驱动和通信
- 批准号:
2121121 - 财政年份:2021
- 资助金额:
$ 70.63万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 70.63万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 70.63万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 70.63万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 70.63万 - 项目类别:
Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
- 批准号:
2412294 - 财政年份:2024
- 资助金额:
$ 70.63万 - 项目类别:
Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
- 批准号:
2323649 - 财政年份:2024
- 资助金额:
$ 70.63万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 70.63万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 70.63万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344260 - 财政年份:2024
- 资助金额:
$ 70.63万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347344 - 财政年份:2024
- 资助金额:
$ 70.63万 - 项目类别:
Standard Grant