Collaborative Research: Modeling and Control of Non-Passive Networks with Distributed Time-Delays: Application in Epidemic Control

合作研究:分布式时滞非无源网络的建模与控制:在流行病控制中的应用

基本信息

  • 批准号:
    2208189
  • 负责人:
  • 金额:
    $ 39.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This research seeks to develop a comprehensive framework for data-driven control of large-scale networks where time delays and the corresponding complex behavior play a substantial role. An example of this situation is the ongoing COVID-19 pandemic, where these effects lead to ``reflective" spreading waves, resulting in hard to predict/control multiple phases of infection spread. To enhance pandemic preparedness and make healthcare systems and governments ready to optimally respond to potential future airborne epidemic disease, it is imperative to generate accurate network models of our connected society and disease spread. Using such realistic models, optimal control strategies can be synthesized that take into account the complex behavior caused by time delays in the network. This project will address this unmet need, which will have a significant social impact and can help stakeholders design strategies to manage a pandemic situation. Education is proactively integrated into this project at all levels, from outreach to pre-college students to graduate training. The strategy to broaden participation will leverage PIs’ connections to institutional resources and programs to help recruit students from underrepresented groups.Effective mitigation of pandemics spreading over networks requires: (a) unveiling the topology, dynamics and delays of the underlying network from experimental data; (b) use of this information to design networks that can robustly minimize the systemic effects of localized infection foci, while respecting overall minimum traffic constraints; and (c) synthesizing real-time optimal control laws that adjust local parameters to prevent the onset of delay-induced echoing waves of pandemic spread. This research seeks to achieve these objectives by embedding the problem into a more general one: data-driven control synthesis for networked systems in the presence of delay-induced non-minimum phase/non-passive behavior, in scenarios where the interconnection structure of the system may not be perfectly known a priori. This embedding allows for exploiting a rich knowledge base, ranging from non-linear identification and semi-algebraic optimization to passivity-based control of networks, leading to a computationally tractable framework. Topology identification will be accomplished through an atomic norm framework. Network synthesis will combine ideas from network control and occupation measures to design and maintain optimal topologies at a slow time scale. Real-time optimal control laws will use event-triggered passivation to prevent delay-induced instabilities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究旨在为大规模网络的数据驱动控制开发一个全面的框架,在大规模网络中,时延和相应的复杂行为发挥着重要作用。这种情况的一个例子是正在进行的新冠肺炎大流行,这些影响导致“反射性”传播波,导致难以预测/控制感染传播的多个阶段。为了加强对大流行的准备,并使医疗保健系统和政府做好以最佳方式应对未来潜在的空气传播流行病的准备,必须生成我们相互关联的社会和疾病传播的准确网络模型。使用这样的现实模型,可以综合考虑网络中时滞引起的复杂行为的最优控制策略。该项目将解决这一未得到满足的需求,这将产生重大的社会影响,并可帮助利益攸关方设计战略来管理大流行局势。从推广到大学预科学生到研究生培训,所有各级的教育都积极纳入这一项目。扩大参与度的战略将利用私人投资机构与机构资源和项目的联系,帮助从代表性不足的群体中招收学生。有效地缓解网络上的流行病传播需要:(A)从实验数据中揭示基础网络的拓扑、动态和延迟;(B)使用这些信息来设计网络,使局部感染中心的系统性影响降至最低,同时尊重总体最低交通限制;以及(C)合成实时最优控制律,调整局部参数,以防止因延迟而引发的大流行传播的回声波的开始。该研究试图通过将问题嵌入到一个更一般的问题中来实现这些目标:在系统的互连结构可能不是完全先验已知的情况下,存在延迟诱导的非最小相位/非被动行为的网络系统的数据驱动控制综合。这种嵌入允许利用丰富的知识库,从非线性识别和半代数优化到基于无源性的网络控制,导致了一个计算上易于处理的框架。拓扑识别将通过原子规范框架完成。网络综合将结合网络控制和占用措施的思想,在较慢的时间尺度上设计和维护最优拓扑。实时最优控制律将使用事件触发的钝化来防止延迟引起的不稳定。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interday Reliability of Upper-limb Geometric MyoPassivity Map for Physical Human-Robot Interaction
  • DOI:
    10.1109/toh.2023.3277453
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Xingyuan Zhou;Peter Paik;Rory O'Keeffe;S. F. Atashzar
  • 通讯作者:
    Xingyuan Zhou;Peter Paik;Rory O'Keeffe;S. F. Atashzar
Design and Modeling of a Smart Torque-Adjustable Rotary Electroadhesive Clutch for Application in Human–Robot Interaction
用于人机交互的智能扭矩可调旋转电粘附离合器的设计和建模
  • DOI:
    10.1109/tmech.2023.3259926
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feizi, Navid;Atashzar, S. Farokh;Kermani, Mehrdad R.;Patel, Rajni V.
  • 通讯作者:
    Patel, Rajni V.
Power-Based Velocity-Domain Variable Structure Passivity Signature Control for Physical Human-(Tele)Robot Interaction
  • DOI:
    10.1109/tro.2022.3197932
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Peter Paik;Smrithi Thudi;S. F. Atashzar
  • 通讯作者:
    Peter Paik;Smrithi Thudi;S. F. Atashzar
Upper-limb Geometric MyoPassivity Map for Physical Human-Robot Interaction
用于物理人机交互的上肢几何 MyoPassivity 地图
Design Optimization and Data-driven Shallow Learning for Dynamic Modeling of a Smart Segmented Electroadhesive Clutch
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

S Farokh Atashzar其他文献

S Farokh Atashzar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('S Farokh Atashzar', 18)}}的其他基金

NSF/FDA SIR: Robust, Reliable, and Trustworthy Regulatory Science Tool for Stroke Recovery Assessment using Hybrid Brain-Muscle Functional Coupling Analysis
NSF/FDA SIR:使用混合脑-肌肉功能耦合分析进行中风恢复评估的稳健、可靠且值得信赖的监管科学工具
  • 批准号:
    2229697
  • 财政年份:
    2022
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
NSF/FDA SIR: Objective Assessment of Recovery during Post Stroke NeuroRehabilitation Therapy using Brain-Muscle Connectivity Network
NSF/FDA SIR:使用脑肌肉连接网络客观评估中风后神经康复治疗期间的恢复情况
  • 批准号:
    2037878
  • 财政年份:
    2021
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
RAPID: SCH: Smart Wearable COVID19 BioTracker Necklace: Remote Assessment and Monitoring of Symptoms for Early Diagnosis, Continual Monitoring, and Prediction of Adverse Event
RAPID:SCH:智能可穿戴式 COVID19 BioTracker 项链:远程评估和症状监测,以实现早期诊断、持续监测和不良事件预测
  • 批准号:
    2031594
  • 财政年份:
    2020
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344260
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 39.53万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了