Dual Finite Element Methods for Challenging Computations
用于挑战性计算的对偶有限元方法
基本信息
- 批准号:2208289
- 负责人:
- 金额:$ 18.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project develops a new finite element method(FEM) for the approximation solutions of partial differential equations. FEMs are powerful tools in scientific computing and their applications include biomedical engineering, environmental engineering, material and manufacturing, structural engineering, and more. While current methods are successfully used for many problems in these applications, there are plenty of numerically challenging problems such as interface problems arising from multiphysics and biological systems, and sign changing problems from the transmission problems with metamaterials. In addition to advancing knowledge within the field of computational mathematics, this project will provide new efficient tools for the problems which current methods have difficulties calculating accurate and efficient approximations. The success of this project will lead to new computational methods with a wide variety of applications. This project will also support education by training graduate and undergraduate students.The purpose of this project is to develop a new finite element method for accurate and efficient approximations of dual variables. For accurate approximations of the dual variables, traditional numerical methods such as least-squares or mixed FEMs increase the degrees of freedom significantly, and the resulting algebraic equations could be indefinite. The proposed research develops a new method that approximates only the dual variables without approximating the primary variable. This results in a smaller problem size and the resulting algebraic equations have symmetric and positive definite matrices. Various error estimates will be developed, including a posteriori error estimates for adaptive procedures. This dual based FEM shows superior performance when it is applied to singularly perturbed problems. This project will address the application of this approach to numerically challenging problems such as discontinuous coefficient, sign changing problems, linear elasticity, and Stokes equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究计画发展一种新的偏微分方程之有限元素法。 有限元模型是科学计算中的强大工具,其应用包括生物医学工程、环境工程、材料和制造、结构工程等。 虽然目前的方法已成功地用于这些应用中的许多问题,但仍存在大量具有数值挑战性的问题,如多物理场和生物系统中的界面问题,以及超材料传输问题中的符号变化问题。 除了推进计算数学领域的知识外,该项目还将为当前方法难以计算准确和有效近似的问题提供新的有效工具。 这个项目的成功将导致新的计算方法与各种各样的应用。该项目还将通过培养研究生和本科生来支持教育。该项目的目的是开发一种新的有限元方法,用于精确有效地近似对偶变量。 为了精确逼近对偶变量,传统的数值方法,如最小二乘法或混合有限元法,大大增加了自由度,由此产生的代数方程可能是不确定的。 提出的研究开发了一种新的方法,近似只有对偶变量,而不近似的主要变量。 这将导致一个较小的问题大小和由此产生的代数方程具有对称和正定矩阵。 将开发各种误差估计,包括自适应程序的后验误差估计。这种基于对偶的有限元法在求解奇异摄动问题时表现出上级性能。 该项目将解决这种方法在数值上具有挑战性的问题,如不连续系数,符号变化问题,线性弹性和Stokes方程的应用。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localized pointwise error estimates for hybrid finite element methods
混合有限元方法的局部逐点误差估计
- DOI:10.1016/j.cam.2023.115385
- 发表时间:2024
- 期刊:
- 影响因子:2.4
- 作者:Ku, JaEun
- 通讯作者:Ku, JaEun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JaEun Ku其他文献
Convergence of adaptive dual finite element methods for singularly perturbed reaction diffusion problems
奇异摄动反应扩散问题的自适应对偶有限元方法的收敛性
- DOI:
10.1016/j.cam.2025.116797 - 发表时间:
2026-01-15 - 期刊:
- 影响因子:2.600
- 作者:
JaEun Ku - 通讯作者:
JaEun Ku
Adaptive least-squares finite element methods: Guaranteed upper bounds and convergence in <em>L</em><sub>2</sub> norm of the dual variable
- DOI:
10.1016/j.camwa.2024.03.002 - 发表时间:
2024-05-15 - 期刊:
- 影响因子:
- 作者:
JaEun Ku - 通讯作者:
JaEun Ku
A posteriori error estimates for a dual finite element method for singularly perturbed reaction–diffusion problems
- DOI:
10.1007/s10543-024-01008-x - 发表时间:
2024-02-05 - 期刊:
- 影响因子:1.700
- 作者:
JaEun Ku;Martin Stynes - 通讯作者:
Martin Stynes
JaEun Ku的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A hybrid Deep Learning-assisted Finite Element technique to predict dynamic failure evolution in advanced ceramics (DeLFE)
用于预测先进陶瓷动态失效演化的混合深度学习辅助有限元技术 (DeLFE)
- 批准号:
EP/Y004671/1 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Research Grant
Continuous finite element methods for under resolved turbulence in compressible flow
可压缩流中未解析湍流的连续有限元方法
- 批准号:
EP/X042650/1 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Research Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
Using paired CT/MRI images to create finite element model of metaphyseal fracture in young children
使用配对 CT/MRI 图像创建幼儿干骺端骨折有限元模型
- 批准号:
2883532 - 财政年份:2023
- 资助金额:
$ 18.89万 - 项目类别:
Studentship
CAREER: Nonlinear Finite Element Manifolds for Improved Simulation of Shock-Dominated Turbulent Flows
职业:用于改进冲击主导的湍流模拟的非线性有限元流形
- 批准号:
2338843 - 财政年份:2023
- 资助金额:
$ 18.89万 - 项目类别:
Continuing Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
Structure-Preserving Finite Element Methods for Incompressible Flow on Smooth Domains and Surfaces
光滑域和表面上不可压缩流动的保结构有限元方法
- 批准号:
2309425 - 财政年份:2023
- 资助金额:
$ 18.89万 - 项目类别:
Standard Grant
Development of a Prediction and Evaluation Method for Load Initiation Timing and Load Magnitude in Femoral Shaft Fractures Using Finite Element Analysis
利用有限元分析开发股骨干骨折载荷启动时间和载荷大小的预测和评估方法
- 批准号:
23K08691 - 财政年份:2023
- 资助金额:
$ 18.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
- 批准号:
23K03232 - 财政年份:2023
- 资助金额:
$ 18.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
- 批准号:
23K04012 - 财政年份:2023
- 资助金额:
$ 18.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)