Collaborative Research: Advancing the Data-to-Distribution Pipeline for Scalable Data-Consistent Inversion to Quantify Uncertainties in Coastal Hazards

合作研究:推进数据到分发管道,实现可扩展的数据一致反演,以量化沿海灾害的不确定性

基本信息

项目摘要

Coastal hazards are a persistent threat to citizenry, industry, and governments worldwide. Of particular concern to US interests are storm surge and flooding from hurricanes in communities stretching from the Gulf of Mexico to the western North Atlantic, interactions between Arctic storms and evolving sea ice coverage impacting North American coastal communities, and oil spill spread from sources such as tankers and deep-water drilling rigs. The ability to quantify uncertainties in the modeling and simulation of these coastal hazards is therefore critical to making data-informed decisions about how to best prepare, mitigate, and respond to such hazards. The research team aims to advance state-of-the-art mathematical, statistical, and computational capabilities to address these applications of societal importance. Moreover, the mathematical, statistical, and computational research are broadly applicable to a wide range of applications of interest to both the scientific and engineering communities. Educational impacts include the training of undergraduate and graduate students in this field. This project requires a multi-faceted research approach built upon a rigorous measure-theoretic foundation to expand the application of Data-Consistent Inversion (DCI), a methodology to identify, quantify, and reduce sources of uncertainty for inputs (parameters) of physics-based computational models, to a wide range of complex physical systems. One facet is the development and analysis of a deep learning based data-to-distribution pipeline to transform spatial-temporal data clouds into non-parametric distributions for DCI that can incorporate optimal experimental design criteria within the pipeline. Another facet is the development of a scalable approach to DCI that simultaneously addresses computational issues arising from high-dimensional feature-spaces as well as limited availability of simulated data due to computationally expensive models. A third facet is the development of an iterative approach to DCI that can be deployed in an operational setting to identify the most likely critical model parameters as data become available. The PIs will implement the algorithmic developments in public domain software for DCI and the data-to-distribution pipeline. The PIs will primarily utilize the state-of-the-art Advanced Circulation (ADCIRC) model and its variants for modeling coastal hazards.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
沿海灾害是对全世界公民、工业和政府的持续威胁。美国利益特别关注的是从墨西哥湾到北大西洋西部的社区的风暴潮和飓风造成的洪水,北极风暴与影响北美沿海社区的海冰覆盖范围变化之间的相互作用,以及油轮和深水钻井平台等来源的石油泄漏。因此,量化这些沿海灾害建模和模拟中的不确定性的能力对于做出关于如何最好地准备,减轻和应对这些灾害的数据知情决策至关重要。该研究团队旨在推进最先进的数学,统计和计算能力,以解决这些具有社会重要性的应用。此外,数学,统计和计算研究广泛适用于科学和工程界感兴趣的广泛应用。教育方面的影响包括培训这一领域的本科生和研究生。该项目需要建立在严格的测量理论基础上的多方面研究方法,以扩展数据一致性反演(DCI)的应用,这是一种识别,量化和减少基于物理的计算模型的输入(参数)的不确定性来源的方法。一个方面是开发和分析基于深度学习的数据到分布管道,以将时空数据云转换为DCI的非参数分布,该分布可以在管道内纳入最佳实验设计标准。另一个方面是开发一种可扩展的DCI方法,同时解决高维特征空间产生的计算问题以及由于计算昂贵的模型而导致的模拟数据的有限可用性。第三个方面是开发DCI的迭代方法,该方法可以部署在操作环境中,以在数据可用时识别最可能的关键模型参数。PI将在公共领域软件中实现DCI和数据分发管道的算法开发。PI将主要利用先进的先进循环(ADCIRC)模型及其变体来模拟沿海灾害。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parameter estimation with maximal updated densities
使用最大更新密度的参数估计
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Troy Butler其他文献

A machine-learning enabled framework for quantifying uncertainties in parameters of computational models
一个支持机器学习的框架,用于量化计算模型参数中的不确定性
Sequential Maximal Updated Density Parameter Estimation for Dynamical Systems with Parameter Drift
具有参数漂移的动力系统的顺序最大更新密度参数估计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Del;Rylan Spence;Troy Butler;Clint Dawson
  • 通讯作者:
    Clint Dawson

Troy Butler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Troy Butler', 18)}}的其他基金

Collaborative Research: Construction and Analysis of Numerical Methods for Stochastic Inverse Problems with Application to Coastal Hydrodynamics
合作研究:随机反问题数值方法的构建和分析及其在海岸流体动力学中的应用
  • 批准号:
    1818941
  • 财政年份:
    2018
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414606
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414608
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414605
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414604
  • 财政年份:
    2024
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing Collaborations for Equity in Marine and Climate Sciences
合作研究:推进海洋和气候科学公平合作
  • 批准号:
    2314916
  • 财政年份:
    2023
  • 资助金额:
    $ 37.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了