Efficient Neural Network Based Numerical Schemes for Hyperbolic Conservation Laws

基于高效神经网络的双曲守恒定律数值方案

基本信息

  • 批准号:
    2208518
  • 负责人:
  • 金额:
    $ 27.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Neural network based methods have achieved success for many scientific computing problems, but for many other problems, they still lack satisfying and practical efficiency when compared to classical numerical methods. The PI will explore various approaches for enhancing efficiency of neural network based methods for solving hyperbolic conservation laws, which is a class of model equations used in many important applications including gas dynamics and basically describe transport. In addition, advanced optimization algorithms will be explored. As a generic approach for solving PDEs, neural network based methods are still way less efficient than classical numerical methods in many applications, especially for hyperbolic conservation laws. The PI will explore methods for enhancing efficiency of neural network based methods for solving time-dependent hyperbolic conservation laws by using neural network as a spatial discretization along with suitable limiters for enforcing convex invariant domain by non-smooth convex optimization. A structured deterministic initialization of a neural network and a finite volume method for updating cell averages can be used to accelerate convergence of optimization for finding neural network solutions. Another focus of the project is to explore inspirations of recent breakthroughs in numerical PDEs toward designing more efficient optimization algorithms. In addition, optimization techniques from unconditionally stable schemes for gradient flow will be explored. A novel approach for constructing efficient neural network based numerical schemes for conservation laws will be investigated. A finite volume formulation will be used so that classical time marching tools can be easily combined with a neural network spatial discretization to simplify the optimization problem for acceleration of convergence. Rigorous analysis of non-smooth optimization algorithms for a limiter enforcing convex invariant domain along with efficient limiter implementation will be explored. Recent breakthroughs in unconditionally stable schemes for phase field equations will be applied to large scale optimization algorithms to seek possibly more efficient steady state solvers for gradient descent type algorithms in data science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于神经网络的方法在许多科学计算问题上取得了成功,但在其他许多问题上,与经典的数值方法相比,仍然缺乏令人满意的实用效率。PI将探索各种方法来提高基于神经网络的方法求解双曲守恒律的效率,双曲守恒律是一类用于许多重要应用的模型方程,包括气体动力学和基本描述运输。此外,将探索先进的优化算法。 作为求解偏微分方程的一种通用方法,神经网络方法在许多应用中,特别是在求解双曲型守恒律方程时,其效率仍远低于经典数值方法。PI将探索提高基于神经网络的方法的效率的方法,用于通过使用神经网络作为空间离散化沿着,通过非光滑凸优化来实施凸不变域。神经网络的结构化确定性初始化和用于更新单元平均值的有限体积方法可以用于加速用于找到神经网络解的优化的收敛。该项目的另一个重点是探索最近在数值偏微分方程中取得的突破对设计更有效的优化算法的启示。此外,将探讨梯度流无条件稳定方案的优化技术。本文将研究一种新的构造基于神经网络的守恒律方程数值格式的方法。将使用有限体积公式,以便经典的时间推进工具可以很容易地与神经网络空间离散化相结合,以简化加速收敛的优化问题。严格分析非光滑优化算法的限制器强制执行凸不变域沿着与有效的限制器实现将探讨。相场方程无条件稳定方案的最新突破将应用于大规模优化算法,以寻求数据科学中梯度下降型算法的更有效的稳态求解器。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiangxiong Zhang其他文献

A curved boundary treatment for discontinuous Galerkin schemes solving time dependent problems
  • DOI:
    10.1016/j.jcp.2015.12.036
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiangxiong Zhang
  • 通讯作者:
    Xiangxiong Zhang
An optimization-based positivity-preserving limiter in semi-implicit discontinuous Galerkin schemes solving Fokker–Planck equations
半隐式间断伽辽金格式中用于求解福克 - 普朗克方程的一种基于优化的保正性限制器
  • DOI:
    10.1016/j.camwa.2025.05.008
  • 发表时间:
    2025-08-15
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Chen Liu;Jingwei Hu;William T. Taitano;Xiangxiong Zhang
  • 通讯作者:
    Xiangxiong Zhang
On the monotonicity of high order discrete Laplacian
关于高阶离散拉普拉斯算子的单调性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Logan J. Cross;Xiangxiong Zhang
  • 通讯作者:
    Xiangxiong Zhang
Kolmogorov’s dissipation number and determining wavenumber for dyadic models
二元模型的柯尔莫哥洛夫耗散数和确定波数
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Mimi Dai;Margaret Hoeller;Qirui Peng;Xiangxiong Zhang
  • 通讯作者:
    Xiangxiong Zhang
An Efficient Quasi-Newton Method with Tensor Product Implementation for Solving Quasi-Linear Elliptic Equations and Systems
  • DOI:
    10.1007/s10915-025-02897-y
  • 发表时间:
    2025-04-30
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Wenrui Hao;Sun Lee;Xiangxiong Zhang
  • 通讯作者:
    Xiangxiong Zhang

Xiangxiong Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiangxiong Zhang', 18)}}的其他基金

Novel High Order Accurate Finite Difference Schemes Constructed via Superconvergence of Finite Element Methods
有限元超收敛构造的新型高阶精确有限差分格式
  • 批准号:
    1913120
  • 财政年份:
    2019
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Standard Grant
Robust and Efficient High Order Methods for Time Dependent Problems
针对瞬态问题的稳健且高效的高阶方法
  • 批准号:
    1522593
  • 财政年份:
    2015
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Continuing Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Standard Grant
Provable, Explainable, Efficient, Robust Deep Neural Network for Large-scale Multimedia Retrieval
用于大规模多媒体检索的可证明、可解释、高效、鲁棒的深度神经网络
  • 批准号:
    22KF0369
  • 财政年份:
    2023
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243053
  • 财政年份:
    2023
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243052
  • 财政年份:
    2023
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Standard Grant
Leveraging Curvature Information for Efficient Neural Network Optimization
利用曲率信息进行高效的神经网络优化
  • 批准号:
    559166-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
A Holistic Approach to Efficient Deep Neural Network Training and Development
高效深度神经网络训练和开发的整体方法
  • 批准号:
    547130-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Collaborative Research: SHF: Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Design
合作研究:SHF:媒介:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
  • 批准号:
    2107321
  • 财政年份:
    2021
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Continuing Grant
Collaborative Reserach: SHF:Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Designs
协作研究:SHF:Medium:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
  • 批准号:
    2107373
  • 财政年份:
    2021
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Continuing Grant
Leveraging Curvature Information for Efficient Neural Network Optimization
利用曲率信息进行高效的神经网络优化
  • 批准号:
    559166-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: SHF: Medium: Analog EDA-Inspired Methods for Efficient and Robust Neural Network Design
合作研究:SHF:媒介:用于高效、鲁棒神经网络设计的模拟 EDA 启发方法
  • 批准号:
    2107189
  • 财政年份:
    2021
  • 资助金额:
    $ 27.16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了