EAGER: CoFedAI: Cost-sensitive Federated AI for Smart Manufacturing Data-Sharing

EAGER:CoFedAI:用于智能制造数据共享的成本敏感型联合人工智能

基本信息

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) project will investigate a cost-sensitive data-sharing paradigm that integrates manufacturing data from multiple manufacturers to improve supervised learning in smart manufacturing. This effort addresses a critical problem in the implementation of Artificial Intelligence (AI) in US manufacturing, since AI methods benefit from training on large datasets and manufacturers typically keep their data secret. The investigators will research methods for preserving the privacy of that data, with the goal of enabling a future manufacturing service infrastructure to aggregate, manage and reuse data from multiple manufacturers. Such an infrastructure can benefit manufacturing by establishing a data-sharing marketplace that enables domestic partnerships and accelerates the adoption of AI technologies, thus enhancing the international market share of the United States. Aspects of this work will also be incorporated into the courses taught by the PIs.The project lays the foundation for a manufacturing data-sharing ecosystem by creating task-specific similarity metrics and a methodology to differentiate the contributions from multiple manufacturing data owners. The selection of suitable data sources for data aggregation depends on the categorization of the data derived from the various sources for similarity in data distribution and variable relationship. The Cost-sensitive Federated AI (CoFedAI) framework will facilitate data exchange to unlock the value of knowledge transfer for AI in manufacturing by employing a cost-sensitive multi-armed bandit data-sharing framework that requests data from multiple stakeholders. The hierarchical framework will extend the multi-armed bandit to multiple data sources and decompose similarity into two interconnected elements: manufacturer similarity and data similarity. In addition, the framework will assess and differentiate the contributions from multiple data owners in manufacturing based on the similarity metrics. In subsequent work, the PIs will extend the envisioned ecosystem to facilitate natural language queries, integration of manufacturer constraints, and novel data-sharing incentives.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
EARLY概念探索性研究资助(EAGER)项目将研究一种成本敏感的数据共享范式,该范式集成了来自多个制造商的制造数据,以改善智能制造中的监督学习。这一努力解决了美国制造业实施人工智能(AI)的一个关键问题,因为AI方法受益于大型数据集的训练,制造商通常会对数据保密。研究人员将研究保护这些数据隐私的方法,目标是使未来的制造服务基础设施能够聚合、管理和重用来自多个制造商的数据。 这样的基础设施可以通过建立数据共享市场,使国内合作伙伴关系和加速人工智能技术的采用,从而提高美国的国际市场份额,从而使制造业受益。这项工作的各个方面也将被纳入PI教授的课程中。该项目通过创建特定于任务的相似性度量和区分多个制造数据所有者的贡献的方法,为制造数据共享生态系统奠定了基础。选择合适的数据来源进行数据汇总,取决于对来自不同来源的数据进行分类,以确定数据分布和变量关系的相似性。成本敏感的联邦人工智能(CoFedAI)框架将通过采用成本敏感的多臂强盗数据共享框架来促进数据交换,以释放制造业人工智能知识转移的价值,该框架要求多个利益相关者提供数据。层次框架将多臂强盗扩展到多个数据源,并将相似性分解为两个相互关联的元素:制造商相似性和数据相似性。 此外,该框架将根据相似性指标评估和区分制造业中多个数据所有者的贡献。在随后的工作中,PI将扩展设想的生态系统,以促进自然语言查询,集成制造商的限制,和新的数据共享激励。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Task-Driven Privacy-Preserving Data-Sharing Framework for the Industrial Internet
  • DOI:
    10.1109/bigdata55660.2022.10020861
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Parshin Shojaee;Yingyan Zeng;Muntasir Wahed;Avi Seth;Ran Jin;Ismini Lourentzou
  • 通讯作者:
    Parshin Shojaee;Yingyan Zeng;Muntasir Wahed;Avi Seth;Ran Jin;Ismini Lourentzou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ismini Lourentzou其他文献

Exploring the limitations in how ChatGPT introduces environmental justice issues in the United States: A case study of 3,108 counties
探讨 ChatGPT 在美国引入环境正义问题的局限性:对 3,108 个县的案例研究
  • DOI:
    10.1016/j.tele.2023.102085
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junghwan Kim;Jinhyung Lee;Kee Moon Jang;Ismini Lourentzou
  • 通讯作者:
    Ismini Lourentzou
Hotspots of news articles: Joint mining of news text & social media to discover controversial points in news
新闻文章热点:新闻文本联合挖掘
Fairness metrics for health AI: we have a long way to go.
健康人工智能的公平指标:我们还有很长的路要走。
  • DOI:
    10.1016/j.ebiom.2023.104525
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    11.1
  • 作者:
    A. Mbakwe;Ismini Lourentzou;L. Celi;Joy T. Wu
  • 通讯作者:
    Joy T. Wu
CLaDS: a cloud-based virtual lab for the delivery of scalable hands-on assignments for practical data science education
CLaDS:基于云的虚拟实验室,用于为实际数据科学教育提供可扩展的实践作业
Text-based geolocation prediction of social media users with neural networks
使用神经网络对社交媒体用户进行基于文本的地理位置预测

Ismini Lourentzou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了