Dynamics and Thermodynamics of Neutron-Rich Nuclear Matter
富中子核物质的动力学和热力学
基本信息
- 批准号:2209318
- 负责人:
- 金额:$ 30.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A major long-term effort within the domain of nuclear science is to understand the properties of matter under extreme conditions of temperature and pressure found in exotic stellar environments such as neutron stars, core-collapse supernovae, and neutron star mergers. The strong nuclear force plays a crucial role in shaping the structure, evolution, and observable emissions of these high-energy astrophysical systems. To support this effort, research to develop improved modeling of hot and dense matter based on state-of-the-art theories of the strong force are under development. The research takes advantage of the tremendous progress that has been achieved in the field of machine learning to facilitate the theoretical modeling. This research enables more reliable predictions for the electromagnetic, neutrino, and gravitational wave signals from supernovae and neutron star mergers that may be observed with space-based x-ray telescopes, ground-based neutrino detectors, and gravitational wave detectors. The results are also being used to improve our understanding of the strong nuclear force from astronomical observations of neutron stars, supernovae, and neutron star mergers. Current numerical simulations of core-collapse supernovae and neutron star mergers largely rely on nuclear equations of state built from phenomenological mean field models. While phenomenological nuclear forces provide a computationally efficient framework for calculating the pressure of hot and dense matter, the systematic uncertainties associated with missing physics can be difficult to fully assess. An alternative but more computationally demanding approach is to develop fundamental theories that include realistic nuclear microphysics and more robust uncertainty quantification. This is an immediate priority in low-energy nuclear physics, given that accurate multi-dimensional modeling of supernovae and neutron star mergers relies on quality nuclear theory inputs, including the equation of state and neutrino reaction rates. This research utilizes new machine learning methods that enable the calculation of high-order many-body perturbation theory corrections to the finite temperature nuclear equation of state. The research is also developing a new matrix inversion method to compute nuclear matter response functions in the random phase approximation using high-precision chiral nuclear forces.This project advances the objectives of "Windows on the Universe: the Era of Multi-Messenger Astrophysics", one of the 10 Big Ideas for Future NSF Investments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
核科学领域的一个主要的长期努力是了解在极端温度和压力条件下物质的性质,这些极端温度和压力条件存在于奇异的恒星环境中,如中子星、核心坍缩超新星和中子星星合并。强核力在塑造这些高能天体物理系统的结构、演化和可观测到的辐射方面起着至关重要的作用。为了支持这一努力,目前正在开展研究,根据最先进的强力理论,改进热密物质的建模。该研究利用了机器学习领域取得的巨大进展,以促进理论建模。这项研究使得对超新星和中子星星合并产生的电磁波、中微子和引力波信号的预测更加可靠,这些信号可以用天基x射线望远镜、地基中微子探测器和引力波探测器观测到。这些结果也被用来提高我们对中子星、超新星和中子星星合并的天文观测中的强核力的理解。 目前对核心坍缩超新星和中子星星合并的数值模拟主要依赖于从唯象平均场模型建立的核状态方程。虽然现象学核力提供了一个计算高密度物质压力的有效框架,但与物理学缺失相关的系统不确定性可能难以完全评估。另一种计算要求更高的方法是发展基础理论,包括现实的核微观物理和更强大的不确定性量化。这是低能核物理学的当务之急,因为超新星和中子星星合并的准确多维建模依赖于高质量的核理论输入,包括状态方程和中微子反应速率。这项研究利用了新的机器学习方法,使高阶多体微扰理论修正的计算有限温度核状态方程。该研究还开发了一种新的矩阵求逆方法,用于使用高精度手征核力在随机相位近似下计算核物质响应函数。多信使天体物理学时代”,该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Holt其他文献
Jeremy Holt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Holt', 18)}}的其他基金
CAREER: Nuclear Microphysics of Neutron Stars, Core-Collapse Supernovae, and Compact Object Mergers
职业:中子星、核心塌陷超新星和致密天体合并的核微物理
- 批准号:
1652199 - 财政年份:2017
- 资助金额:
$ 30.11万 - 项目类别:
Continuing Grant
相似海外基金
Collective Quantum Thermodynamics: Quantum vs Classical
集体量子热力学:量子与经典
- 批准号:
MR/Y003845/1 - 财政年份:2024
- 资助金额:
$ 30.11万 - 项目类别:
Fellowship
Control and thermodynamics of quantum systems
量子系统的控制和热力学
- 批准号:
2892547 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Studentship
Thermodynamics of Growing Active and Living Matter
活性物质和生命物质生长的热力学
- 批准号:
EP/W027194/1 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Fellowship
Conference: 32nd Annual Midwest Thermodynamics and Statistical Mechanics (MTSM) Conference
会议:第 32 届年度中西部热力学和统计力学 (MTSM) 会议
- 批准号:
2313246 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Theoretical Spectroscopy and Thermodynamics of Correlated Electron Materials
相关电子材料的理论光谱学和热力学
- 批准号:
2233892 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Continuing Grant
Thermodynamics and Redox Reactivity of Birnessite
水钠锰矿的热力学和氧化还原反应性
- 批准号:
2304711 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Thermodynamics of Multi-Domain Power Networks: Principles for Optimization and Control with Applications to Turboelectric Systems
多域电力网络的热力学:优化和控制原理及其在涡轮发电系统中的应用
- 批准号:
2221726 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Collaborative Research: Energy Conversion Beyond the First Law of Thermodynamics in Non-Equilibrium Plasmas
合作研究:非平衡等离子体中超越热力学第一定律的能量转换
- 批准号:
2308669 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Numerical and experimental investigation of the impact of preferential flow and nonequilibrium thermodynamics on meltwater transport through snow
优先流和非平衡热力学对融水通过雪输送影响的数值和实验研究
- 批准号:
2243631 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Standard Grant
Coarse graining methods in nonequilibrium thermodynamics: Systematization and exploration using information geometry
非平衡热力学中的粗粒化方法:利用信息几何的系统化和探索
- 批准号:
23KJ0732 - 财政年份:2023
- 资助金额:
$ 30.11万 - 项目类别:
Grant-in-Aid for JSPS Fellows