Conference on Exotic Continua in Modern Mathematics

现代数学中的奇异连续体会议

基本信息

  • 批准号:
    2209688
  • 负责人:
  • 金额:
    $ 2.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

This award provides support for participants, especially students and early-career researchers, attending the 51st John and Lida Barrett Memorial Lectures which will be held on June 9-12, 2022, at University of Tennessee, Knoxville. This four-day conference brings together researchers from four areas of mathematics in which “exotic” continua naturally appear: (1) analysis on metric spaces, (2) geometry of singular spaces, (3) topological dynamical systems, and (4) geometric group theory. The conference will provide an opportunity for researchers in each area to obtain a broad introduction to all other areas, followed by more specialized talks. The goal of the conference is to bring out commonalities in methods and produce cross-fertilization between these areas. The plenary lecturers, Judy Kennedy (general continua theory), Nageswari Shanmugalingam (analysis on metric spaces), Guofang Wei (geometry of singular spaces), Olga Lukina (topological dynamical systems), and Kim Ruane (geometric group theory) are all prominent women in their respective areas. The plenary speakers will be involved in inviting additional speakers on more specialized topics. The conference encourages the inclusion and participation of junior scientists and members of groups under-represented in STEM.Continua theory has a very long history in mathematics, going back to the earliest days in which topology became a distinct field. Continua, which are defined as connected, compact, metrizable spaces, include “nice” spaces such as compact manifolds. Metrizable continua that do not (or are not known to) have a traditional universal covering space are referred as “exotic”. Exotic continua emerged in the quest for interesting examples long before they began to appear in the natural settings in which we now encounter them. Fractals appear as the underlying spaces that arise in important questions in analysis with applications, for example in design of cell phone antennae. Fractals are examples of Peano continua which in turn include all compact limits of geodesic spaces in the Gromov-Hausdorff sense. Exotic continua, also, arise as boundaries of groups and spaces in geometric group theory, and as solenoidal spaces, generalizing original examples that are defined as inverse limits via covering maps of much nicer spaces, including manifolds, but which themselves need not be path connected. The conference website is https://math.utk.edu/barrett/51st-lectures/.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为参与者,特别是学生和早期职业研究人员提供支持,参加将于2022年6月9日至12日在田纳西大学诺克斯维尔举行的第51届约翰和利达巴雷特纪念讲座。这个为期四天的会议汇集了来自四个数学领域的研究人员,其中“异国情调”连续自然出现:(1)度量空间的分析,(2)奇异空间的几何,(3)拓扑动力系统,(4)几何群论。会议将为每个领域的研究人员提供一个机会,以获得对所有其他领域的广泛介绍,然后进行更专业的会谈。会议的目标是找出方法上的共同点,并在这些领域之间产生相互促进作用。全体讲师,朱迪肯尼迪(一般连续理论),纳格斯瓦里Shanmugalingam(分析度量空间),Guofang魏(几何奇异空间),奥尔加Lukina(拓扑动力系统),和金Ruane(几何群论)都是突出的妇女在各自的领域。全体会议的发言者将参与邀请更多的发言者就更专门的议题发言。会议鼓励年轻科学家和在STEM中代表性不足的团体成员的包容和参与。连续统理论在数学中有着非常悠久的历史,可以追溯到拓扑学成为一个独特领域的最早时期。连续统,被定义为连通的,紧的,可度量的空间,包括“好”的空间,如紧流形。没有(或不知道)传统的泛覆盖空间的可度量化连续统被称为“奇异”。奇异的连续统出现在寻找有趣的例子的过程中,早在它们开始出现在我们现在遇到的自然环境中之前。分形作为潜在的空间出现在分析和应用中的重要问题中,例如在手机天线的设计中。分形是皮亚诺连续统的例子,皮亚诺连续统又包括Gromov-Hausdorff意义下测地线空间的所有紧极限。奇异连续统,也出现在几何群论中的群和空间的边界,以及作为螺线管空间,推广了最初的例子,这些例子通过覆盖更好的空间(包括流形)的映射被定义为逆极限,但它们本身不需要是路径连通的。会议网站是https://math.utk.edu/barrett/51st-lectures/.This奖反映了NSF的法定使命,并已被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vyron Vellis其他文献

Quasiconformal non-parametrizability of almost smooth spheres
  • DOI:
    10.1007/s00029-016-0292-4
  • 发表时间:
    2016-10-22
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Pekka Pankka;Vyron Vellis
  • 通讯作者:
    Vyron Vellis
Extension properties of planar uniform domains
  • DOI:
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vyron Vellis
  • 通讯作者:
    Vyron Vellis
Hölder Parameterization of Iterated Function Systems and a Self-Affine Phenomenon
迭代函数系统的 Hölder 参数化和自仿射现象
Decomposing multitwists
分解多重扭曲
  • DOI:
    10.1007/s11854-023-0301-4
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Fletcher;Vyron Vellis
  • 通讯作者:
    Vyron Vellis
HÖLDER CONNECTEDNESS AND PARAMETERIZATION OF ITERATED FUNCTION SYSTEMS
迭代功能系统的支架连接和参数化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Badger;Vyron Vellis
  • 通讯作者:
    Vyron Vellis

Vyron Vellis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vyron Vellis', 18)}}的其他基金

Analysis and Geometry in Metric Spaces
度量空间中的分析和几何
  • 批准号:
    2154918
  • 财政年份:
    2022
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Standard Grant
Parametrization, Embedding and Extension Problems in Metric Spaces
度量空间中的参数化、嵌入和扩展问题
  • 批准号:
    1952510
  • 财政年份:
    2019
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Continuing Grant
Parametrization, Embedding and Extension Problems in Metric Spaces
度量空间中的参数化、嵌入和扩展问题
  • 批准号:
    1800731
  • 财政年份:
    2018
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Continuing Grant

相似海外基金

Exotic isotope production for medical applications
用于医疗应用的奇异同位素生产
  • 批准号:
    MR/X036561/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Fellowship
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密​​顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
  • 批准号:
    24K17055
  • 财政年份:
    2024
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New generation sky surveys, exotic transients and gravitational wave sources
新一代巡天、奇异瞬变和引力波源
  • 批准号:
    ST/X006506/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Research Grant
Invasion success of exotic ants promoted by newly-evolved castes
新进化种姓推动外来蚂蚁入侵成功
  • 批准号:
    23KJ0615
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Consequences of secondary contact between native and closely related exotic species: ecological processes and genome dynamics
本地物种和密切相关的外来物种之间二次接触的后果:生态过程和基因组动态
  • 批准号:
    23KJ2156
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Comprehensive understanding of the quantum criticality yielding the exotic superconductivity and the non-Fermi-liquid behavior
全面了解产生奇异超导性和非费米液体行为的量子临界性
  • 批准号:
    23K03315
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Enhancement of the spin-orbit interaction and exotic superconductivity in correlated metals
相关金属中自旋轨道相互作用和奇异超导性的增强
  • 批准号:
    23K03330
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing first-principles method for strongly interacting phonons and its application to exotic phenomena
开发强相互作用声子的第一原理方法及其在奇异现象中的应用
  • 批准号:
    22KJ1028
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Conference: Twentieth Exotic Beam Summer School (EBSS2023)
会议:第二十届奇异光束暑期学校(EBSS2023)
  • 批准号:
    2309936
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 2: A Quantum Science Education and Research Program for HBCUs: Exotic Physics and Applications of Solid-State Qubits
ExpandQISE:轨道 2:HBCU 的量子科学教育和研究计划:奇异物理学和固态量子位的应用
  • 批准号:
    2329067
  • 财政年份:
    2023
  • 资助金额:
    $ 2.83万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了