Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education
合作研究:智能自适应实验框架:增强和定制数字教育
基本信息
- 批准号:2209821
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
People are constantly learning – whether formal education of homework problems & videos, or reading websites like Wikipedia. This project develops the Experiments As a Service Infrastructure (EASI), which lowers the barriers to conducting randomized experiments that compare alternative ways of designing digital learning experiences, as well as analyzing the data derived from the systems to rapidly change what future people receive. It does this by bringing together multidisciplinary researchers around the shared problem of testing ideas for improving and personalizing educational resources. The research also advances (1) the science of learning and instruction; (2) methods for analyzing complex educational data, and (3) machine learning algorithms that use data to improve educational experiences. Improving learning and teaching increases people's knowledge and gives them the ability to solve problems they care about, driving their personal and career success and increasing society's human capital.Instructional decisions about digital educational resources impact all students, from practice problems in K12 systems to tutorial webpages in university and community college online courses. The current versions of resources are too infrequently compared against alternative resources, which may provide better learning. With this in mind, the project has the goal of using data to test hypotheses about what is most helpful to students, and then use that data to change the experience for future students. The Experiments-As-a-Service-Infrastructure supports three complementary types of multi-disciplinary, collaborative research. A–Design: the infrastructure helps researchers investigate theories of learning and discover how to improve instruction by designing randomized field experiments on components of real-world digital educational resources. This provides more ecologically valid research on learning and instruction, in subfields of education, psychology, policy and discipline-based education research. B–Analysis: the infrastructure facilitates sophisticated analysis of experiments in the context of large-scale data about student profiles, such as to discover which interventions are effective for different subgroups of students. This can advance the use of innovative data-intensive methods for gaining actionable knowledge in education, learning analytics, educational data mining, and applied statistics. C–Adaptation: the infrastructure enables research into adaptive experimentation by providing a testbed for algorithms that dynamically analyze data from experiments, to enhance learning by presenting future students with whichever version of a resource (condition) is more effective, or to personalize learning by presenting different subgroups of future students with the version of a resource that is most effective for their subgroup. The infrastructure provides a testbed for empirical evaluation of which algorithms enact effective adaptive experimentation in education to inspire the development of new algorithms. Finally, the work aligns many educational communities around the shared problem of enhancing and personalizing education through experimentation and spurs multidisciplinary research by providing extensive support for collaboration and sharing of designs, data, analysis scripts and algorithms while fostering an online community for training and collaborations, to promote high-quality, innovative, impactful experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们在不断地学习--无论是正规教育的家庭作业问题视频,还是像维基百科这样的阅读网站。该项目开发了实验即服务基础设施(EASI),它降低了进行随机实验的障碍,这些实验比较了设计数字学习体验的替代方法,并分析了从系统中获得的数据,以快速改变未来人们所接受的内容。它通过将多学科研究人员聚集在一起,共同解决测试改进和个性化教育资源的想法的问题。该研究还推进了(1)学习和教学科学;(2)分析复杂教育数据的方法,以及(3)使用数据改善教育体验的机器学习算法。改善学习和教学增加了人们的知识,使他们有能力解决他们关心的问题,推动他们的个人和职业成功,增加社会的人力资本。有关数字教育资源的教学决策影响所有学生,从K12系统的实践问题到大学和社区学院在线课程的教程网页。当前版本的资源很少与替代资源进行比较,这可能会提供更好的学习。考虑到这一点,该项目的目标是使用数据来测试什么对学生最有帮助的假设,然后使用这些数据来改变未来学生的体验。实验即服务基础设施支持三种互补类型的多学科协作研究。A-Design:该基础设施帮助研究人员调查学习理论,并通过设计真实世界数字教育资源组件的随机现场实验来发现如何改进教学。这在教育、心理学、政策和基于学科的教育研究的子领域中提供了关于学习和教学的更具生态有效性的研究。B分析:这一基础设施有助于对有关学生概况的大规模数据进行复杂的实验分析,例如发现哪些干预措施对不同的学生分组有效。这可以促进创新的数据密集型方法的使用,以获得教育,学习分析,教育数据挖掘和应用统计方面的可操作知识。C-适应:该基础设施通过为动态分析来自实验的数据的算法提供测试平台来实现对自适应实验的研究,以通过向未来的学生呈现更有效的资源(条件)版本来增强学习,或者通过向未来学生的不同子组呈现对其子组最有效的资源版本来个性化学习。该基础设施提供了一个实验平台,用于实证评估哪些算法在教育中进行有效的自适应实验,以激发新算法的开发。最后,这项工作使许多教育社区围绕通过实验增强和个性化教育的共同问题保持一致,并通过为设计,数据,分析脚本和算法的协作和共享提供广泛支持来促进多学科研究,同时培养一个在线社区进行培训和协作,以促进高质量,创新,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Carver其他文献
Can observational techniques help novices overcome the software inspection learning curve? An empirical investigation
- DOI:
10.1007/s10664-006-9021-5 - 发表时间:
2006-10-18 - 期刊:
- 影响因子:3.600
- 作者:
Jeffrey Carver;Forrest Shull;Victor Basili - 通讯作者:
Victor Basili
Longlining haddock with manufactured bait to reduce catch of Atlantic cod in a conservation zone
- DOI:
10.1016/j.fishres.2008.08.015 - 发表时间:
2008-11-01 - 期刊:
- 影响因子:
- 作者:
Michael V. Pol;Steven J. Correia;Robert MacKinnon;Jeffrey Carver - 通讯作者:
Jeffrey Carver
Perspective-Based Reading: A Replicated Experiment Focused on Individual Reviewer Effectiveness
- DOI:
10.1007/s10664-006-5967-6 - 发表时间:
2006-02-18 - 期刊:
- 影响因子:3.600
- 作者:
José C. Maldonado;Jeffrey Carver;Forrest Shull;Sandra Fabbri;Emerson Dória;Luciana Martimiano;Manoel Mendonça;Victor Basili - 通讯作者:
Victor Basili
Jeffrey Carver的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Carver', 18)}}的其他基金
Collaborative Research: EAGER: Characterizing Research Software from NSF Awards
协作研究:EAGER:获得 NSF 奖项的研究软件特征
- 批准号:
2211277 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CC* Compute: Accelerating Advances in Science and Engineering at The University of Alabama Through HPC Infrastructure
CC* 计算:通过 HPC 基础设施加速阿拉巴马大学科学与工程的进步
- 批准号:
2018846 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
A Inquiry-Based Pedagogy and Supporting Tool to Improve Student Learning of Software Testing Concepts
基于探究的教学法和支持工具,以提高学生对软件测试概念的学习
- 批准号:
2013296 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: INnovative Training Enabled by a Research Software Engineering Community of Trainers (INTERSECT)
协作研究:网络培训:实施:小型:由研究软件工程培训师社区 (INTERSECT) 支持的创新培训
- 批准号:
2017259 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SFS@BAMA: Shaping the Next Generation of Cyber Professionals
SFS@BAMA:塑造下一代网络专业人员
- 批准号:
1946599 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Travel Grant for the 2018 Empirical Software Engineering International Week
2018 年实证软件工程国际周旅费补助
- 批准号:
1834707 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Transforming Computer Science Education Research Through Use of Appropriate Empirical Research Methods: Mentoring and Tutorials
合作研究:通过使用适当的实证研究方法来改变计算机科学教育研究:指导和教程
- 批准号:
1525373 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
EAGER: Collaborative Research: Making Software Engineering Work for Computational Science and Engineering: An Integrated Approach
EAGER:协作研究:使软件工程为计算科学与工程服务:一种综合方法
- 批准号:
1445344 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Integrating Software Engineering and Human Error Models to Improve Software Quality
集成软件工程和人为错误模型以提高软件质量
- 批准号:
1421006 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CI-P: Advanced Systematic Literature Review Infrastructure for Software Engineering
CI-P:软件工程的高级系统文献综述基础设施
- 批准号:
1305395 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411297 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411153 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411299 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411151 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant