Functional Regression and Classification for Data Supported on Complex Geometries

复杂几何形状支持的数据的函数回归和分类

基本信息

  • 批准号:
    2210064
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project aims to develop novel statistical methods for functional/imaging data that are located on complex geometries. Thanks to advances in imaging technology, such data are now ubiquitous in the fields of medicine, biology, and climatology, among others. Perhaps the most common task is to use these complex data (for example, brain activity on the cortical surface) to predict a response variable (for example, age or disease status) by employing regression and classification models. The project will develop a novel framework for regression and classification that leverages mathematical tools including partial differential equations and differential geometry to integrate additional information available and define more accurate models. Moreover, efficient computational implementations and theoretical guarantees on the models' performance on previously unseen data will also be provided. The software implementations of the new models will be made publicly available. The research activities will offer numerous opportunities for interdisciplinary research training of the next generation of statisticians and data scientists.The framework under development will generalize current functional data methodology to complex settings that arise from the analysis of modern imaging data. Specifically, the research activities include development of regularized linear models and generalized linear models for predictors that are functional data supported on multidimensional non-linear domains. These models will be formulated as an infinite-dimensional minimization over spaces of smooth functions. To efficiently approximate their solutions, the project will employ tools from numerical analysis of partial differential equations and elements of calculus of variations. Further, the new framework will be generalized to situations where the functional predictors display tensor structure, which can be leveraged to control the complexity of the solution via low-rank constraints.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在为位于复杂几何形状上的功能/成像数据开发新的统计方法。由于成像技术的进步,这种数据现在在医学、生物学和气候学等领域无处不在。也许最常见的任务是使用这些复杂的数据(例如,大脑皮质表面的活动)通过使用回归和分类模型来预测响应变量(例如,年龄或疾病状态)。该项目将开发一个新的回归和分类框架,利用包括偏微分方程式和微分几何在内的数学工具,整合现有的更多信息,并确定更准确的模型。此外,还将为模型在以前未见过的数据上的性能提供有效的计算实现和理论保证。新型号的软件实现将公开提供。研究活动将为下一代统计学家和数据科学家的跨学科研究培训提供大量机会。正在开发的框架将把目前的功能数据方法推广到现代成像数据分析所产生的复杂环境中。具体地说,研究活动包括开发用于预报器的正则化线性模型和广义线性模型,这些模型是多维非线性域上支持的函数数据。这些模型将被表示为光滑函数空间上的无限维极小化。为了有效地近似它们的解,该项目将使用偏微分方程组和变分原理的数值分析工具。此外,新的框架将被推广到功能预测器显示张量结构的情况,可以利用张量结构通过低级约束来控制解决方案的复杂性。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Functional random effects modeling of brain shape and connectivity
大脑形状和连接性的功能随机效应建模
  • DOI:
    10.1214/21-aoas1572
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lila, Eardi;Aston, John A.
  • 通讯作者:
    Aston, John A.
Discussion of LESA: Longitudinal Elastic Shape Analysis of Brain Subcortical Structures
LESA的讨论:大脑皮层下结构的纵向弹性形状分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eardi Lila其他文献

Using clinical data to reclassify ESUS patients to large artery atherosclerotic or cardioembolic stroke mechanisms
  • DOI:
    10.1007/s00415-024-12848-6
  • 发表时间:
    2024-12-21
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Lauren Klein-Murrey;David L. Tirschwell;Daniel S. Hippe;Mona Kharaji;Cristina Sanchez-Vizcaino;Brooke Haines;Niranjan Balu;Thomas S. Hatsukami;Chun Yuan;Nazem W. Akoum;Eardi Lila;Mahmud Mossa-Basha
  • 通讯作者:
    Mahmud Mossa-Basha
Eigen-Adjusted Functional Principal Component Analysis
特征调整函数主成分分析
Functional data analysis of neuroimaging signals associated with cerebral activity in the brain cortex
与大脑皮层大脑活动相关的神经影像信号的功能数据分析
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eardi Lila;J. Aston;L. Sangalli
  • 通讯作者:
    L. Sangalli
Geometric Functional Data Analysis
  • DOI:
    10.17863/cam.44923
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eardi Lila
  • 通讯作者:
    Eardi Lila
Statistics on functional data and covariance operators in linear inverse problems
线性反问题中函数数据和协方差算子的统计
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eardi Lila;S. Arridge;J. Aston
  • 通讯作者:
    J. Aston

Eardi Lila的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Robust sparse partial least squares regression and classification
鲁棒稀疏偏最小二乘回归和分类
  • 批准号:
    487299-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Robust sparse partial least squares regression and classification
鲁棒稀疏偏最小二乘回归和分类
  • 批准号:
    487299-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Robust sparse partial least squares regression and classification
鲁棒稀疏偏最小二乘回归和分类
  • 批准号:
    487299-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Robust sparse partial least squares regression and classification
鲁棒稀疏偏最小二乘回归和分类
  • 批准号:
    487299-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 12万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
RUI: Classification, regression, and density estimation with missing variables
RUI:分类、回归和缺失变量的密度估计
  • 批准号:
    1407400
  • 财政年份:
    2014
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Establishment of classification and regression tree model for assessing of a risk for future occurence of life-style related disease using a community-based cohort data.
建立分类和回归树模型,用于使用基于社区的队列数据评估未来发生生活方式相关疾病的风险。
  • 批准号:
    25460768
  • 财政年份:
    2013
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Classification d'événements en vidéos par la regression logistique multinomiale
多项回归逻辑视频中的分类事件
  • 批准号:
    429633-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 12万
  • 项目类别:
    University Undergraduate Student Research Awards
Regression, classification, and bayesian networks
回归、分类和贝叶斯网络
  • 批准号:
    5172-2005
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Building flexible tree models and ensemble tree models for statistical learning in classification, regression and failure time data analysis
构建灵活的树模型和集成树模型,用于分类、回归和故障时间数据分析中的统计学习
  • 批准号:
    311980-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Structured classification and regression
结构化分类和回归
  • 批准号:
    0906616
  • 财政年份:
    2009
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了