Degradation-Aware Self-Healing Control of Power Electronics Systems
电力电子系统的退化感知自愈控制
基本信息
- 批准号:2210106
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Computational power is everywhere. Sensors are increasingly low-cost and ubiquitous. Despite the extensive resources, modern power electronics systems (PESs) cannot pinpoint its degradation status and, hence, cannot perform self-healing to prevent costly failures. For example, wind turbines or photovoltaic (PV) systems are subjected to extreme temperature and humidity swings from -30ºC to 55ºC and 30% to 100% (e.g., offshore applications). Such a harsh climate and thermal (C&T) swings rapidly increase the failure rate and maintenance costs by up to 30% of the overall generation cost. Suppose their degradation and, hence, remaining useful lifetime (RUL) can be accurately measured or precisely predicted in advance. In that case, we can utilize existing PESs software or hardware to perform proactive self-healing through the adaptive control of degradation evolution, accumulation, acceleration, and, hence, RUL changes of the building blocks of power electronics in increasingly complicated modern energy systems. This could substantially enhance reliability, scheduling flexibility, and controllability while preventing costly downtimes. The outcome of this project will be utilized for interactive and hands-on learning programs to inspire K-12 children’s interest in STEM fields.This project will model the degradation of wide bandgap (WB) power switches under real-world C&T swings, which poses the critical bottleneck of exploiting degradation-aware self-healing (DASH) control in modern PESs. Specifically, we will develop a cascade generative adversarial networks learning and data purification strategy to effectively model the large reliability data of power electronics under a real-world C&T condition. The formulated data-driven models and multi-sensory tools will be fundamentally more accurate than state-of-the-art. Moreover, we will develop a systematic DASH control framework, enabling lifetime managed PES operations by understanding four system health conditions (healthy, intermediate degradation, self-healing, and failure) instead of a traditional heuristic assumption (healthy and failure). The formulated RUL estimation and DASH control tools are able to fundamentally transform the current design and control practices, creating a seamless integration of reliable WB switches into the wide spectrum of power electronics and energy systems under diverse C&T conditions. This will accelerate the migration toward an energy-efficient grid and transportation electrification while minimizing development cost and period and preventing unplanned downtime and catastrophic failures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算能力无处不在。传感器的成本越来越低,而且无处不在。尽管资源丰富,但现代电力电子系统(PESS)无法准确定位其退化状态,因此无法进行自我修复以防止代价高昂的故障。例如,风力涡轮机或光伏(PV)系统的极端温度和湿度波动范围从-30°C到55°C和30%到100%(例如,海上应用)。如此恶劣的气候和热力(C&;T)波动迅速增加了故障率和维护成本,最高可达总发电成本的30%。假设它们的退化以及因此剩余的使用寿命(RUL)可以被准确地测量或预先精确地预测。在这种情况下,我们可以利用现有的PESS软件或硬件,通过对日益复杂的现代能源系统中电力电子组件的退化演化、积累、加速以及RUL变化的自适应控制来执行主动自愈。这可以大大提高可靠性、调度灵活性和可控性,同时避免代价高昂的停机时间。这个项目的成果将被用于互动和动手学习项目,以激发K-12儿童对STEM领域的兴趣。该项目将模拟真实世界C&A;T摆动下宽带隙(WB)电源开关的退化,这构成了现代PESS中利用退化感知自我修复(DASH)控制的关键瓶颈。具体地说,我们将开发一种级联生成性对抗网络学习和数据净化策略,以有效地模拟真实C&T条件下电力电子的大量可靠性数据。制定的数据驱动模型和多传感工具将从根本上比最先进的更准确。此外,我们将开发一个系统的DASH控制框架,通过了解四种系统健康状况(健康、中等降级、自我修复和故障)而不是传统的启发式假设(健康和故障)来实现终身受管的PES操作。制定的RUL估算和DASH控制工具能够从根本上改变当前的设计和控制实践,将可靠的宽带开关无缝集成到各种C&T条件下的电力电子和能源系统中。这将加快向节能电网和交通电气化的迁移,同时将开发成本和开发周期降至最低,并防止计划外停机和灾难性故障。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seungdeog Choi其他文献
Comparison of electrical losses in an inverter-fed five-phase and three-phase permanent magnet assisted synchronous reluctance motor
逆变器供电的五相和三相永磁辅助同步磁阻电机的电气损耗比较
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
A. Arafat;Seungdeog Choi - 通讯作者:
Seungdeog Choi
Performance-Oriented Electric Motors Diagnostics in Modern Energy Conversion Systems
现代能源转换系统中以性能为导向的电动机诊断
- DOI:
10.1109/tie.2011.2158037 - 发表时间:
2012 - 期刊:
- 影响因子:7.7
- 作者:
Seungdeog Choi;B. Akin;M. Rahimian;H. Toliyat - 通讯作者:
H. Toliyat
Prognosis of enhance mode gallium nitride high electron mobility transistors using on-state resistance as fault precursor
使用通态电阻作为故障前兆的增强型氮化镓高电子迁移率晶体管的预测
- DOI:
10.1109/ecce.2017.8096400 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Haque;Seungdeog Choi - 通讯作者:
Seungdeog Choi
Robust Signal Processing Techniques for the Implementation of Motor Current Signature Analysis Diagnosis Based on Digital Signal Processors
基于数字信号处理器实现电机电流特征分析诊断的鲁棒信号处理技术
- DOI:
10.1201/b13008-11 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Seungdeog Choi - 通讯作者:
Seungdeog Choi
Common Mode EMI Mitigation at a Power Converter Network
电源转换器网络的共模 EMI 缓解
- DOI:
10.1109/ecce44975.2020.9236021 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
A. Amin;Seungdeog Choi - 通讯作者:
Seungdeog Choi
Seungdeog Choi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seungdeog Choi', 18)}}的其他基金
PFI-RP: High-Reliability, Low-Cost, Rare-Earth-Free Electric Motor for Electrified Transportation Applications
PFI-RP:用于电气化运输应用的高可靠性、低成本、无稀土电动机
- 批准号:
2234271 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Distributed Electro-Mechanical Transmitters for Adaptive and Power-Efficient Wireless Communications in RF-Denied Environments
分布式机电发射器,用于射频干扰环境中的自适应和高能效无线通信
- 批准号:
1905434 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
I-Corps: High - Reliability and Low - Cost Design of Electric Motor for Automotive Industry Application
I-Corps:汽车行业应用电机的高可靠性和低成本设计
- 批准号:
1518968 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Towards perceptive and self-aware robots
迈向有感知力和自我意识的机器人
- 批准号:
2780895 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
Towards perceptive and self-aware robots
迈向有感知力和自我意识的机器人
- 批准号:
2742381 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
Self-aware and self-correcting machine tools for robust accuracy
具有自我意识和自我修正功能的机床可实现稳定的精度
- 批准号:
RGPIN-2016-06418 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Self-aware and self-correcting machine tools for robust accuracy
具有自我意识和自我修正功能的机床可实现稳定的精度
- 批准号:
RGPIN-2016-06418 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Self-aware and self-correcting machine tools for robust accuracy
具有自我意识和自我修正功能的机床可实现稳定的精度
- 批准号:
RGPIN-2016-06418 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Probably Approximately Correct Sampling and Self-Aware Monte Carlo
可能近似正确的采样和自我意识蒙特卡罗
- 批准号:
533641-2018 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
NRI: FND: Towards Scalable and Self-Aware Robotic Perception
NRI:FND:迈向可扩展和自我意识的机器人感知
- 批准号:
1924937 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Self-aware and self-correcting machine tools for robust accuracy
具有自我意识和自我修正功能的机床可实现稳定的精度
- 批准号:
RGPIN-2016-06418 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Probably Approximately Correct Sampling and Self-Aware Monte Carlo
可能近似正确的采样和自我意识蒙特卡罗
- 批准号:
533641-2018 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Self-aware and self-correcting machine tools for robust accuracy
具有自我意识和自我修正功能的机床可实现稳定的精度
- 批准号:
RGPIN-2016-06418 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




