Collaborative Research NSF-ANR: Mechanisms of Terminal Erythroid Enucleation
NSF-ANR 合作研究:终末红细胞剜除机制
基本信息
- 批准号:2210366
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award aims to describe the physical mechanisms at play in enucleation during mammalian erythropoiesis, which is the process of generation of red blood cells (RBCs). The objective is to elucidate the role of the mechanical constraints in the bone marrow on the extrusion and detachment of the nucleus of the erythroid precursor. This role is currently poorly understood, which holds back progress in fundamental studies of erythropoiesis. This project will not only advance our fundamental understanding of erythroid enucleation but provide new knowledge for improving in vitro red blood cell production by engineering mechanical environments to overcome ineffective enucleation. This project will be the first to connect the internal and external forces that drive erythroid enucleation, and to incorporate mechanosensing of the cell. There are several barriers to reveal the mechanisms of intrinsic and extrinsic enucleation cues. First, it is difficult to fabricate an in vitro device that mimics the crowded environment of the bone marrow with extremely small inter-endothelial gaps that allows live imaging of enucleation. Second, the computational modeling for quantifying forces is challenging due to the strong interactions in small gaps and the prediction of forces across molecular to cellular scales. The interdisciplinary team of scientists in this project (consisting of three leading groups: a biologist in erythropoiesis at Northwestern University, a physicist in microfluidics in CNRS Marseille, France, and an engineer in multiscale modeling at the University of Illinois at Chicago) is uniquely positioned to overcome such barriers and elucidate the mechanisms of intrinsic and extrinsic enucleation cues.This project will have practical impact in the biomedical field, such as transfusion medicine in which rare blood types often have limited supplies. The bottleneck of in vivo RBC production is the ineffective enucleation, and the knowledge obtained from this study will help overcome this bottleneck and could potentially revolutionize the industry of blood supply. The project will also have educational and training outcomes, as results and techniques obtained from this project will be incorporated into courses the Principal Investigators teach. One PhD student and two postdoctoral fellows will be trained through the support of this project. This collaborative US/France project is supported by the US National Science Foundation and the French Agence Nationale de la Recherche, where NSF funds the US investigators and ANR funds the partner in France.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项旨在描述哺乳动物红细胞生成过程中去核的物理机制,这是红细胞(RBC)的生成过程。目的是阐明骨髓中的机械约束对红系前体细胞核的挤出和分离的作用。这一作用目前知之甚少,这阻碍了红细胞生成基础研究的进展。该项目不仅将推进我们对红细胞去核的基本理解,而且将为通过工程机械环境来克服无效的去核来改善体外红细胞生产提供新的知识。该项目将是第一个连接驱动红细胞去核的内部和外部力量,并结合细胞的机械传感。揭示内源性和外源性去核线索的机制存在一些障碍。首先,很难制造一种体外装置,该装置模仿骨髓的拥挤环境,具有允许摘除的实时成像的极小的内皮间间隙。其次,由于小间隙中的强相互作用以及分子到细胞尺度上的力预测,用于量化力的计算建模是具有挑战性的。 这个项目中的跨学科科学家团队(由三个领导小组组成:西北大学红细胞生成生物学家,法国国家科学研究中心马赛微流体物理学家,和芝加哥伊利诺斯大学多尺度建模工程师)是唯一的定位,以克服这些障碍,并阐明机制的内在和外在的去核线索。这个项目将有实际的影响,生物医学领域,如输血医学,其中稀有血型通常供应有限。体内红细胞生产的瓶颈是无效的去核,从这项研究中获得的知识将有助于克服这一瓶颈,并可能彻底改变血液供应行业。该项目还将产生教育和培训成果,因为从该项目获得的结果和技术将纳入主要研究者教授的课程。一名博士生和两名博士后研究员将通过该项目的支持进行培训。 这个美国/法国合作项目得到了美国国家科学基金会和法国国家研究机构的支持,NSF为美国的研究人员提供资金,ANR为法国的合作伙伴提供资金。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Polyurethane Culture Substrates Enable Long-Term Neuron Monoculture in a Human in vitro Model of Neurotrauma.
- DOI:10.1089/neur.2023.0060
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Mitevska, Angela;Santacruz, Citlally;Martin, Eric J.;Jones, Ian E.;Ghiacy, Arian;Dixon, Simon;Mostafazadeh, Nima;Peng, Zhangli;Kiskinis, Evangelos;Finan, John D.
- 通讯作者:Finan, John D.
Physical mechanisms of red blood cell splenic filtration
- DOI:10.1073/pnas.2300095120
- 发表时间:2023-10-31
- 期刊:
- 影响因子:11.1
- 作者:Moreau, Alexis;Yaya, Francois;Peng, Zhangli
- 通讯作者:Peng, Zhangli
Analytical theory for a droplet squeezing through a circular pore in creeping flows under constant pressures
- DOI:10.1063/5.0156349
- 发表时间:2023-08-01
- 期刊:
- 影响因子:4.6
- 作者:Tang, Zhengxin;Yaya, Francois;Peng, Zhangli
- 通讯作者:Peng, Zhangli
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhangli Peng其他文献
Engineered Pericellular Matrix Deposition Controls Mesenchymal Stromal Cell Volume Expansion and Fate
- DOI:
10.1016/j.bpj.2019.11.3256 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Sing-Wan Wong;Raymond Bargi;Celine Macaraniag;Zhangli Peng;Jae-Won Shin - 通讯作者:
Jae-Won Shin
Molecular-based simulation of the mechanic response of RBC membrane in large deformations
基于分子的红细胞膜大变形力学响应模拟
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Q. Zhu;R. Asaro;Zhangli Peng - 通讯作者:
Zhangli Peng
Multiscale Simulation of Malaria-Infected Erythrocytes and Spherocytes of Hereditary Spherocytosis Passing Endothelial Slits in the Spleen
- DOI:
10.1016/j.bpj.2011.11.3066 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Zhangli Peng;Igor Pivkin;Ming Dao - 通讯作者:
Ming Dao
Mechanisms of Red Blood Cell Splenic Filtration Revealed By Multiscale Modeling and in-Vitro Microfluidic Experiments
- DOI:
10.1182/blood-2023-181861 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Zhangli Peng;Alexis Moreau;François Yaya;Huije Lu;Anagha Surendranath;Anne Charrier;Benoit Dehapiot;Emmanuelle Helfer;Annie Viallat - 通讯作者:
Annie Viallat
In vitro Characterization and Numerical Simulations of Red Blood Cell Transmigration Through Splenic Inter-Endothelial Slits
- DOI:
10.1016/j.bpj.2019.11.3350 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Antoni Garcia-Herreros;Huijie Lu;Zhangli Peng;Juan C. del Alamo - 通讯作者:
Juan C. del Alamo
Zhangli Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhangli Peng', 18)}}的其他基金
CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells
职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模
- 批准号:
2339054 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical, Numerical, and Experimental Investigation of Flow Sensing by the Primary Cilium
合作研究:初级纤毛流量传感的数学、数值和实验研究
- 批准号:
1951526 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale Models and Quantitative Experiments of Red Blood Cells Transmigration through Inter-Endothelial Slits in the Spleen
合作研究:红细胞通过脾脏内皮间缝隙迁移的多尺度模型和定量实验
- 批准号:
1948347 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Scale Models and Quantitative Experiments of Red Blood Cells Transmigration through Inter-Endothelial Slits in the Spleen
合作研究:红细胞通过脾脏内皮间缝隙迁移的多尺度模型和定量实验
- 批准号:
1706436 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333889 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
- 批准号:
2333888 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321481 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
- 批准号:
2321480 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
- 批准号:
2420846 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant