Latent Dependence and Identifiable, Graphical, Deep Modeling of Discrete Latent Variables
离散潜在变量的潜在依赖性和可识别、图形化、深度建模
基本信息
- 批准号:2210796
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the data science era, complex dependent and heterogeneous data emerge in various subject areas, from education to psychology to medicine. Latent variable models are powerful statistical approaches to tackle such complex data. However, existing statistical methods for analysis of latent variables are mostly limited to relatively simple settings and cannot meet the need for modern high dimensional applications. For example, one critical motivating example for this project is personalized learning, for which educators aim to diagnose individual students’ latent strengths and weaknesses across many skills based on educational assessment data. In this scenario, it is highly desirable to make discrete statistical diagnoses about student’s fine-grained skills, to understand the relationships between various latent skills and the underlying cognitive processes, and to develop targeted remedial instructions. To achieve these goals, this project aims to develop a suite of new statistical tools for discrete latent variable modeling. The new statistical methodology is intended to apply not only to educational data, but also to data from psychology, medicine, genetics, and health sciences. The tools will be implemented in publicly available software. These research tools are expected to help practitioners to uncover hidden information about students, patients, and biological systems in a statistically principled manner. In addition, this project will provide multiple training opportunities for graduate and undergraduate students, introducing them to the important area of latent variable models in modern statistics. This project aims to advance the statistical theory and methodology of discrete latent variable modeling and providing novel statistical algorithms applicable to education and other applications. The project has three objectives. The first is to develop new mathematical machinery to study identifiability in general discrete models with latent and graphical components. These techniques will be used to derive sharp identifiability conditions for models motivated by education sciences. The second objective is to elaborate two new families of generative models with discrete latent variables: deep generative models with multilayer latent structures, and probabilistic graphical models encoding hard hierarchical latent constraints. Identifiability of these models will be established, which would guarantee the validity of statistical inference. The resulting models are expected to shed light on latent dependencies in several applications, particularly, in conjunction with educational diagnoses and personalized learning. The third objective is to develop novel hypothesis testing of identifiability, flexible Bayesian methods to simultaneously infer latent dimensions and other parameters, and efficient structure learning procedures to estimate the latent graphical constraints. The project will offer opportunities for professional development of trainees at the interface of statistics, data science, psychology, and educational sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在数据科学时代,从教育到心理学再到医学,各个学科领域都出现了复杂的依赖性和异构性数据。潜变量模型是处理此类复杂数据的强大统计方法。然而,现有的潜变量统计分析方法大多局限于相对简单的设置,不能满足现代高维应用的需要。例如,这个项目的一个关键激励例子是个性化学习,教育工作者的目标是根据教育评估数据诊断个别学生在许多技能方面的潜在优势和弱点。在这种情况下,它是非常可取的离散的统计诊断学生的细粒度的技能,了解各种潜在的技能和潜在的认知过程之间的关系,并制定有针对性的补救指示。为了实现这些目标,本项目旨在开发一套新的离散潜变量建模的统计工具。新的统计方法不仅适用于教育数据,还适用于心理学、医学、遗传学和健康科学数据。这些工具将在公开提供的软件中实施。这些研究工具预计将帮助从业者发现隐藏的信息,学生,病人和生物系统在统计原则的方式。此外,该项目将为研究生和本科生提供多种培训机会,向他们介绍现代统计学中潜在变量模型的重要领域。该项目旨在推进离散潜变量建模的统计理论和方法,并提供适用于教育和其他应用的新颖统计算法。该项目有三个目标。第一个是开发新的数学机器来研究具有潜在和图形成分的一般离散模型的可识别性。这些技术将被用来获得尖锐的可识别性条件的教育科学的动机模型。第二个目标是阐述两个新的家庭的生成模型与离散的潜在变量:深层生成模型与多层潜在结构,和概率图形模型编码硬层次潜在的约束。这些模型的可识别性将被建立,这将保证统计推断的有效性。由此产生的模型有望揭示潜在的依赖关系在几个应用程序中,特别是在教育诊断和个性化学习。第三个目标是开发新的假设检验的可识别性,灵活的贝叶斯方法,同时推断潜在的尺寸和其他参数,和有效的结构学习程序来估计潜在的图形约束。该项目将为受训人员提供统计学、数据科学、心理学和教育科学等方面的专业发展机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dimension-Grouped Mixed Membership Models for Multivariate Categorical Data
- DOI:
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Yuqi Gu;E. Erosheva;Gongjun Xu;D. Dunson
- 通讯作者:Yuqi Gu;E. Erosheva;Gongjun Xu;D. Dunson
Blessing of Dependence: Identifiability and Geometry of Discrete Models with Multiple Binary Latent Variables
依赖的祝福:具有多个二元潜变量的离散模型的可识别性和几何结构
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:1.5
- 作者:Gu, Yuqi
- 通讯作者:Gu, Yuqi
Bayesian Pyramids: identifiable multilayer discrete latent structure models for discrete data
贝叶斯金字塔:离散数据的可识别多层离散潜在结构模型
- DOI:10.1093/jrsssb/qkad010
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gu, Yuqi;Dunson, David B
- 通讯作者:Dunson, David B
Generic Identifiability of the DINA Model and Blessing of Latent Dependence
DINA 模型的通用可识别性和潜在依赖的祝福
- DOI:10.1007/s11336-022-09886-2
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Gu, Yuqi
- 通讯作者:Gu, Yuqi
A Spectral Method for Identifiable Grade of Membership Analysis with Binary Responses
- DOI:10.1007/s11336-024-09951-y
- 发表时间:2024-02-15
- 期刊:
- 影响因子:3
- 作者:Chen,Ling;Gu,Yuqi
- 通讯作者:Gu,Yuqi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuqi Gu其他文献
In reply: Deliberately restricted laryngeal view with GlideScope® video laryngoscope: ramifications for airway research and teaching
- DOI:
10.1007/s12630-016-0682-2 - 发表时间:
2016-06-21 - 期刊:
- 影响因子:3.300
- 作者:
Joshua Robert;Yuqi Gu;J. Adam Law - 通讯作者:
J. Adam Law
Creditor Interventions and Firm Innovation : Evidence from Debt Covenant Violations
债权人干预与企业创新:违反债务契约的证据
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yuqi Gu;Connie X. Mao - 通讯作者:
Connie X. Mao
Going Deep in Diagnostic Modeling: Deep Cognitive Diagnostic Models (DeepCDMs).
- DOI:
10.1007/s11336-023-09941-6 - 发表时间:
2023-12 - 期刊:
- 影响因子:3
- 作者:
Yuqi Gu - 通讯作者:
Yuqi Gu
Environmental performance and employee welfare: Evidence from health benefit costs
环境绩效和员工福利:来自健康福利成本的证据
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Yuqi Gu - 通讯作者:
Yuqi Gu
Bank Interventions and Firm Innovation: Evidence from Debt Covenant Violations
银行干预和企业创新:违反债务契约的证据
- DOI:
10.2139/ssrn.2329007 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yuqi Gu;Connie X. Mao;X. Tian - 通讯作者:
X. Tian
Yuqi Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
- 批准号:71903144
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ecological and Evolutionary Constraints on the Temperature Dependence of Microbial Community Respiration
微生物群落呼吸温度依赖性的生态和进化限制
- 批准号:
NE/Y000889/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
MCA: Interactions between density dependence and environmental stress in plant-microbial symbioses
MCA:植物-微生物共生中密度依赖性与环境胁迫之间的相互作用
- 批准号:
2321608 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: EAR-PF: Evaluating spatiotemporal dependence in groundwater-dependent ecosystem processes
博士后奖学金:EAR-PF:评估地下水依赖的生态系统过程的时空依赖性
- 批准号:
2305449 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Fellowship Award
Development of a group of particle transport codes connecting the wall, peripheral, and core regions including dependence of ro-vibrational states of molecular hydrogen
开发一组连接壁、外围和核心区域的粒子传输代码,包括分子氢的旋转振动状态的依赖性
- 批准号:
23K03362 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Epigenetic dependence of diffuse midline glioma with H3K27M mutation
具有 H3K27M 突变的弥漫性中线胶质瘤的表观遗传依赖性
- 批准号:
10736036 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Targeting Ischemia-Induced Autophagy Dependence in hepatocellular Carcinoma through Image-guided Locoregional Therapy
通过图像引导局部治疗靶向肝细胞癌中缺血诱导的自噬依赖性
- 批准号:
10585078 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Providers and Older Pain Patients with Prescription Opioid Dependence: A Qualitative Study to Understand Barriers to Opioid Taper, Cessation, and Transition to Buprenorphine.
具有处方阿片类药物依赖性的提供者和老年疼痛患者:一项定性研究,旨在了解阿片类药物逐渐减少、戒断和过渡到丁丙诺啡的障碍。
- 批准号:
10671358 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Pathological AMPA receptor adaptations governing dependence-escalated alcohol self-administration
病理性 AMPA 受体适应控制依赖性升级的酒精自我给药
- 批准号:
10592002 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Tracking and regulation of nicotine dependence in the insular cortex
岛叶皮质尼古丁依赖性的跟踪和调节
- 批准号:
10604925 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
PRECLINICAL MEDICATIONS SCREENING IN DEPENDENCE, AFFECT AND PAIN MODELS OF ALCOHOLISM
酗酒的依赖性、影响和疼痛模型的临床前药物筛选
- 批准号:
10953233 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别: