New Developments in Four Dimensions

四个维度新进展

基本信息

  • 批准号:
    2211147
  • 负责人:
  • 金额:
    $ 2.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

This award supports travel for US-based participants in the conference “New Developments in Four Dimensions” held at the University of Victoria, British Columbia, Canada, during June 13-17, 2022. The meeting will focus on the branch of low-dimensional topology concerned with understanding four-dimensional manifolds. Low-dimensional topology is the mathematical study of spaces (manifolds) of dimension two, three, and four. Two-dimensional and three-dimensional spaces are intuitive: The surfaces of tables, bagels, or the earth are all examples of two-dimensional spaces and the spatial world we inhabit and the inside of a bagel are examples of three-dimensional spaces. Four-dimensional spaces are considerably more difficult to imagine (and study) with the most salient example being the spacetime conceptualization of the universe. In this sense, four-dimensional topology is the study of the possible shapes that our physical universe might realize. Surfaces have been well-studied classically, and major advances in the late 1900s and early 2000s have given researchers a clear understanding of three-dimensional manifolds. Four-dimensional manifolds represent the unknown frontier of low-dimensional topology, and there remain myriad open conjectures and unanswered question in this field of mathematics.There has been an explosion of activity within four-dimensional topology in the last few years, particularly in the study of diffeomorphism groups of four-manifolds, the construction and detection of exotic structures and embeddings, and the introduction of trisections as a new tool in the field. The purpose of this conference is to gather an international group of experts to explore these recent developments in the study of four-dimensional manifolds, disseminate contemporary research in the field, promote the research of early-career mathematicians working in the field, include and promote the research of mathematicians from underrepresented groups, and to give a venue for new collaborations to occur and old collaborations to continue.Conference Website: https://math.stanford.edu/~maggiehm/developmentsin4DThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持旅行为总部设在美国的与会者在会议“四个方面的新发展”在维多利亚,不列颠哥伦比亚省,加拿大,在2022年6月13日至17日举行的大学。会议将集中在低维拓扑学的分支与理解四维流形有关。低维拓扑学是对二维、三维和四维空间(流形)的数学研究。二维和三维空间是直观的:桌子、百吉饼或地球的表面都是二维空间的例子,我们居住的空间世界和百吉饼的内部都是三维空间的例子。四维空间是相当困难的想象(和研究)与最突出的例子是宇宙的时空概念化。在这个意义上,四维拓扑学是对我们的物理宇宙可能实现的可能形状的研究。曲面在经典上已经得到了很好的研究,20世纪末和21世纪初的重大进展使研究人员对三维流形有了清晰的理解。四维流形代表了低维拓扑学的未知前沿,在这一数学领域中仍然存在着无数的开放性和未解的问题。在过去的几年里,四维拓扑学的研究活动激增,特别是在四维流形的同构群的研究,奇异结构和嵌入的构造和检测,以及引入三等分作为该领域的新工具。本次会议的目的是聚集一个国际专家组,探讨四维流形研究的这些最新发展,传播该领域的当代研究,促进该领域早期职业数学家的研究,包括并促进来自代表性不足群体的数学家的研究,会议网址:https://math.stanford.edu/~maggiehm/developmentsin4DThis奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Meier其他文献

Jeffrey Meier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Meier', 18)}}的其他基金

RUI: New Approaches to Understanding the Four-Sphere
RUI:理解四个领域的新方法
  • 批准号:
    2006029
  • 财政年份:
    2020
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Trisections -- New Directions in Low-Dimensional Topology
FRG:协作研究:三等分——低维拓扑的新方向
  • 批准号:
    1933019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Trisections -- New Directions in Low-Dimensional Topology
FRG:协作研究:三等分——低维拓扑的新方向
  • 批准号:
    1758087
  • 财政年份:
    2017
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Trisections -- New Directions in Low-Dimensional Topology
FRG:协作研究:三等分——低维拓扑的新方向
  • 批准号:
    1664540
  • 财政年份:
    2017
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1400543
  • 财政年份:
    2014
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Fellowship Award

相似海外基金

Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
  • 批准号:
    10064693
  • 财政年份:
    2024
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
  • 批准号:
    23H01264
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
  • 批准号:
    23H01944
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
  • 批准号:
    23K12950
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New developments in Javanese Homo erectus research using synchrotron, proteomics and high precision dating
利用同步加速器、蛋白质组学和高精度测年技术进行爪哇直立人研究的新进展
  • 批准号:
    23K17404
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
  • 批准号:
    23K01343
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了