Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design

合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计

基本信息

  • 批准号:
    2211491
  • 负责人:
  • 金额:
    $ 19.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The research objective of this proposal is to address the computational challenges in the innovative nanomaterial data analysis or nanoinformatics for predicting nanomaterials properties. Nanomaterials are very small materials that can be used in a variety of applications, including nanomedicine development. The vast quantities of existing experimental data require new nanoinformatics approaches and toolkits for data extraction, analysis, and sharing. This can help guide the safe design of next-generation of nanomedicines with desirable therapeutic activities, while also ensuring they have limited side effects. However, there are currently two critical limitations to using machine learning approaches in nanoinformatics modeling studies. First, most existing data available for modeling were based on a limited number of nanomaterials that also have limited experimental characterization of their chemical properties. Second, despite significant efforts from various researchers, the available modeling approaches that have been developed are applicable only for a specified small set of nanomaterials and have rarely been used to design nanomaterials. This project will address the computational challenges in large-scale nanomaterial data mining, development and validation of an automated informatics framework to digitalize nanostructures, identify molecular markers, and support fast nanomaterial retrieval and integrative analysis. This project will also facilitate the development of novel educational tools to enhance several current courses at Rutgers University, University of Pittsburgh, and University of Minnesota. The investigators will engage the minority students and under-served populations in research activities to give them a better exposure to cutting-edge science research.In this project, a novel machine learning based nanoinformatics framework will be developed to integrate new digital nanostructure representations with the emerging key computational techniques. The project focuses on designing principled machine learning and data science algorithms for analyzing large-scale nanomaterial data to create new informatics toolkits to facilitate the nanomedicine-based treatments and new nanomaterial design. Specifically, the following research goals will be met in this project: 1) new computational tools to automate nanostructure digitalization; 2) interpretation method to enhance deep learning based predictive models; 3) new cross-modal deep hashing network for fast and accurate nanomaterial data retrieval; and 4) evaluate the proposed methods and system using real large-scale nanomaterial data and release the database and nanoinformatics toolkits to the public. Unlike most existing nanoinformatics strategies that perform modeling and analysis at a small scale, this project will provide promising new directions to the analysis of large-scale complex nanomaterial data by addressing the critical data-intensive analysis issues including efficiency, scalability, and interpretability. The investigations combine rigorous theoretical analysis and emerging application studies and will contribute to both academic research and potential commercialized products. This project will advance and thus extend the relationship between engineering innovation and computational analysis, and hold great promise for nanomaterial and nanomedicine developments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本提案的研究目标是解决创新纳米材料数据分析或纳米信息学预测纳米材料特性的计算挑战。纳米材料是非常小的材料,可用于各种应用,包括纳米医学开发。大量现有的实验数据需要新的纳米信息学方法和工具包来进行数据提取、分析和共享。这可以帮助指导具有理想治疗活性的下一代纳米药物的安全设计,同时确保它们具有有限的副作用。然而,目前在纳米信息学建模研究中使用机器学习方法存在两个关键限制。首先,大多数可用于建模的现有数据都是基于数量有限的纳米材料,这些纳米材料的化学性质的实验表征也有限。其次,尽管各研究人员做出了重大努力,但已开发的现有建模方法仅适用于特定的一小部分纳米材料,很少用于设计纳米材料。该项目将解决大规模纳米材料数据挖掘,自动信息学框架的开发和验证中的计算挑战,以数字化纳米结构,识别分子标记,并支持快速纳米材料检索和综合分析。该项目还将促进开发新的教育工具,以加强罗格斯大学、匹兹堡大学和明尼苏达大学目前的几门课程。研究人员将让少数民族学生和服务不足的人群参与研究活动,让他们更好地接触前沿科学研究。在这个项目中,将开发一种新的基于机器学习的纳米信息学框架,将新的数字纳米结构表示与新兴的关键计算技术相结合。该项目的重点是设计有原则的机器学习和数据科学算法,用于分析大规模纳米材料数据,以创建新的信息学工具包,促进基于纳米医学的治疗和新的纳米材料设计。具体而言,该项目将实现以下研究目标:1)自动化纳米结构数字化的新计算工具; 2)增强基于深度学习的预测模型的解释方法; 3)快速准确检索纳米材料数据的新跨模态深度哈希网络;以及4)使用真实的大规模纳米材料数据评估所提出的方法和系统,并向公众发布数据库和纳米信息学工具包。与大多数现有的在小规模上进行建模和分析的纳米信息学策略不同,该项目将通过解决关键的数据密集型分析问题,包括效率,可扩展性和可解释性,为大规模复杂纳米材料数据的分析提供有前途的新方向。这些调查联合收割机结合了严格的理论分析和新兴的应用研究,将有助于学术研究和潜在的商业化产品。该项目将推进并扩展工程创新和计算分析之间的关系,并为纳米材料和纳米医学的发展提供巨大的希望。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generalized-Smooth Nonconvex Optimization is As Efficient As Smooth Nonconvex Optimization
  • DOI:
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziyi Chen;Yi Zhou;Yingbin Liang;Zhaosong Lu
  • 通讯作者:
    Ziyi Chen;Yi Zhou;Yingbin Liang;Zhaosong Lu
A Newton-CG Based Augmented Lagrangian Method for Finding a Second-Order Stationary Point of Nonconvex Equality Constrained Optimization with Complexity Guarantees
基于牛顿CG的增广拉格朗日求复杂度保证非凸等式约束优化二阶驻点方法
  • DOI:
    10.1137/22m1489824
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    He, Chuan;Lu, Zhaosong;Pong, Ting Kei
  • 通讯作者:
    Pong, Ting Kei
Accelerated First-Order Methods for Convex Optimization with Locally Lipschitz Continuous Gradient
局部 Lipschitz 连续梯度凸优化的加速一阶方法
  • DOI:
    10.1137/22m1500496
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Lu, Zhaosong;Mei, Sanyou
  • 通讯作者:
    Mei, Sanyou
Exactly Uncorrelated Sparse Principal Component Analysis
完全不相关的稀疏主成分分析
Iteration-complexity of first-order augmented Lagrangian methods for convex conic programming
  • DOI:
    10.1137/21m1403837
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaosong Lu;Zirui Zhou
  • 通讯作者:
    Zhaosong Lu;Zirui Zhou
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhaosong Lu其他文献

l_0-minimization methods for image restoration problems based on wavelet frames
基于小波框架的l_0-最小化图像恢复问题方法
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Jian Lu Ke Qiao;Ke Qiao;Xiaorui Li;Zhaosong Lu;Yuru Zou
  • 通讯作者:
    Yuru Zou
Algorithm Design and Analysis for Large-Scale Semidefinite Programming and Nonlinear Programming
大规模半定规划和非线性规划的算法设计与分析
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaosong Lu
  • 通讯作者:
    Zhaosong Lu
A nonlocal Kronecker-basis-representation method for low-dose CT sinogram recovery
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Jian Lu;Huaxuan Hu;Yuru Zou;Zhaosong Lu;Xiaoxia Liu;Keke Zu;Lin Li
  • 通讯作者:
    Lin Li
Error Bounds and Limiting Behavior of Weighted Paths Associated with the SDP Map X1/2SX1/2
与 SDP 映射 X1/2SX1/2 相关的加权路径的错误界限和限制行为
  • DOI:
    10.1137/s1052623403430828
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaosong Lu;R. Monteiro
  • 通讯作者:
    R. Monteiro
$ell _p$ Regularized low-rank approximation via iterative reweighted singular value minimization
$ell _p$ 通过迭代重新加权奇异值最小化正则化低秩近似

Zhaosong Lu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336768
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
  • 批准号:
    2324770
  • 财政年份:
    2023
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了