Collaborative Research: CNS Core: Medium: Robust Behavioral Analysis and Synthesis of Network Control Protocols Using Formal Verification
合作研究:CNS 核心:中:使用形式验证的网络控制协议的鲁棒行为分析和综合
基本信息
- 批准号:2212103
- 负责人:
- 金额:$ 29.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Networked systems in general, and the Internet in particular, are complex systems involving many interacting components. Network control algorithms implemented in numerous network protocols are at the core of these systems. To date, the design and analysis of network control algorithms has been based on heuristics and idealized models of networks, without any guarantees on their performance in practice. This proposal aims to address this shortcoming and develop methods to prove performance properties of network control algorithms and to synthesize algorithms with performance proofs. Innovations in network control algorithms are occurring at a rapid pace, spurred by evolving network technologies, a fast-changing application mix, and the rising importance of quality-of-experience for users, who react negatively to poor performance (e.g., by giving applications poor ratings or finding alternatives). Performance matters not only in the mean, but also in the tail statistics. In response, the research community and industry have developed numerous innovative network control algorithms to improve performance. Despite these advances, little is known about performance guarantees of such algorithms, nor is there is principled proof-driven framework to help the development of these algorithms. The research proposed herein will, if successful, improve the community's ability to verify performance properties and synthesize new algorithms with provable properties. The tools produced in the proposed work will open new directions in network resource allocation research. The education plan includes the incorporation of this research's findings into the undergraduate and graduate curricula and offers students an opportunity to implement verifiable network control algorithms using the tools from Veritas, treating performance as correctness.This proposal develops a framework, Veritas, which uses formal verification to prove performance properties of a network control algorithm. With Veritas a user can (1) encode an algorithm in first-order logic, (2) specify a hypothesis about the algorithm, and (3) test if the hypothesis holds by running the encoded algorithm in a customizable, built-in environment model. In addition, given constraints on a control algorithm---input observations usable by the algorithm and an action space over which it can respond to observations---along with the environment model encoded in first-order logic and a specification of performance objectives, Veritas automatically searches over the space of controllers to propose a mapping between input observations and controller actions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一般来说,网络系统,尤其是互联网,是涉及许多相互作用的组件的复杂系统。在众多网络协议中实现的网络控制算法是这些系统的核心。到目前为止,网络控制算法的设计和分析一直是基于启发式的和理想化的网络模型,在实践中对其性能没有任何保证。该方案旨在解决这一缺陷,并发展各种方法来证明网络控制算法的性能,并综合具有性能证明的算法。网络控制算法的创新正在以快速的速度发生,原因是不断发展的网络技术、快速变化的应用组合以及对用户体验质量日益重要的影响,用户对糟糕的性能做出负面反应(例如,通过给予应用程序较差的评级或寻找替代方案)。业绩不仅关系到平均值,也关系到尾部统计数据。对此,研究界和业界开发了许多创新的网络控制算法来提高性能。尽管取得了这些进展,但人们对这些算法的性能保证知之甚少,也没有一个原则性的证明驱动的框架来帮助这些算法的开发。本文提出的研究如果成功,将提高社区验证性能属性和合成具有可证明属性的新算法的能力。所提出的工具将为网络资源分配研究开辟新的方向。该教育计划包括将这项研究的结果纳入本科生和研究生课程,并为学生提供使用VERITAS的工具实施可验证的网络控制算法的机会,将性能视为正确性。该建议开发了一个框架VERITAS,它使用形式验证来证明网络控制算法的性能属性。使用Veritas,用户可以(1)以一阶逻辑对算法进行编码,(2)指定关于算法的假设,以及(3)通过在可定制的内置环境模型中运行编码的算法来测试假设是否成立。此外,考虑到对控制算法的约束-算法可使用的输入观测以及它可以对观测做出响应的行动空间-以及以一阶逻辑编码的环境模型和性能目标规范,VERITAS自动搜索控制器空间,以提出输入观测和控制器行动之间的映射。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Saeed其他文献
Modeling and Simulation of Modified MPPT Techniques under Varying Operating Climatic Conditions
不同工作气候条件下改进的 MPPT 技术的建模和仿真
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.2
- 作者:
D. Khodair;Saad Motahhir;Hazem H. Mostafa;A. Shaker;H. A. E. Munim;M. Abouelatta;Ahmed Saeed - 通讯作者:
Ahmed Saeed
ENDOSCOPIC SUBMUCOSAL DISSECTION AS SALVAGE THERAPY AFTER FAILED ENDOSCOPIC MUCOSAL RESECTION OF LARGE NON-PEDUNCULATED COLORECTAL POLYPS: A LARGE MULTICENTER PROPENSITY MATCHED SCORE ANALYSIS
内镜下黏膜下剥离术作为大型无蒂结直肠息肉内镜下黏膜切除术失败后的挽救治疗:一项大型多中心倾向匹配评分分析
- DOI:
10.1016/j.gie.2025.03.562 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:7.500
- 作者:
Ernesto S. Robalino Gonzaga;Yiyang Zhang;Abdul S. Mohammed;Baha Aldeen Bani Fawwaz;Aimen Farooq;Nihal I. Khan;William W. King;Salmaan A. Jawaid;Mohamed O. Othman;Mai A. Khalaf;Shai Friedland;Abel Joseph;Joo Ha Hwang;A. Aziz Aadam;Robert Bechara;Jade Marhaba;Lionel S. D'Souza;Ahmed Saeed;Sherif A. Andrawes;Yutaka Tomizawa;Dennis Yang - 通讯作者:
Dennis Yang
NORTH AMERICAN EXPERIENCE OF ENDOSCOPIC SUBMUCOSAL DISSECTION OF DISTAL RECTAL LESIONS EXTENDING TO THE DENTATE LINE - A LARGE SCALE MULTICENTER STUDY
- DOI:
10.1016/j.gie.2024.04.1458 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Talia Malik;Aqsa Khan;Harishankar Gopakumar;Dushyant Singh Dahiya;Ishaan Vohra;Christina Zelt;Mindy Flanagan;Antonio Mendoza Ladd;A. Aziz Aadam;Anthony Kang;Ahmed Saeed;Mai Khalaf;Mohamed Othman;Saowanee Ngamruengphong;Suchapa Arayakarnkul;Dennis Yang;Mohammad Bilal;Mariajose Rojas DeLeon;Alexander Schlachterman;Pranita Madaka - 通讯作者:
Pranita Madaka
Study of a grid-connected floating photovoltaic power plant of 1.0 MW installed capacity in Saudi Arabia
- DOI:
10.1016/j.heliyon.2024.e35180 - 发表时间:
2024-08-30 - 期刊:
- 影响因子:
- 作者:
Ahmed Saeed;Shafiqur Rehman;Fahad A. Al-Sulaiman - 通讯作者:
Fahad A. Al-Sulaiman
Vibration Suppression and Flywheel Energy Storage in a Drillstring Bottom-Hole-Assembly
- DOI:
- 发表时间:
2012-07 - 期刊:
- 影响因子:0
- 作者:
Ahmed Saeed - 通讯作者:
Ahmed Saeed
Ahmed Saeed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Saeed', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: High-performance Network Stacks for the Edge
合作研究:CNS 核心:中:边缘的高性能网络堆栈
- 批准号:
2212098 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
- 批准号:
2343959 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2341378 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Continuing Grant














{{item.name}}会员




