Collaborative Research: AF: Medium: Algorithms for Geometric Graphs
合作研究:AF:媒介:几何图算法
基本信息
- 批准号:2212130
- 负责人:
- 金额:$ 40.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project studies geometric graphs. These are geometric structures that realize the relationships of a combinatorial graph, that is, a set of elements called “nodes” or “vertices” and a set of pairwise relationships between them, such as would be determined by a social network or road network. Geometric graphs arise in a wide range of applications, including physics, data visualization, computational biology, and data forensics. Any such graph can be realized in a geometric space, so that the nodes of the graph are points in the space and relationships between nodes are represented by line segments or curves connecting pairs of nodes. These geometric realizations of combinatorial graphs can then be measured in terms of how well they achieve various parameters, such as area, edge length, angle separation, etc. Indeed, the research area of graph drawing is exclusively focused on algorithms for producing good (faithful and representative) geometric realizations of graphs. Improved methods for dealing with geometric graphs can benefit any application, such as data visualization or automobile navigation, that generates or uses geometric graphs.The goals of this project are broadly organized around the following two themes: (1) Algorithms for producing geometric realizations of graphs. This theme is directed at algorithms and complexity bounds for producing geometric realizations of graphs, including considerations of complexity measures such as area, edge length, edge bends, edge crossings, etc. (2) Algorithms on geometric graphs. This theme is directed at algorithms that take as input geometric graphs, such as road networks, with the goal of achieving complexity bounds that are improved over those possible for general graphs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究几何图形。这些是实现组合图关系的几何结构,即一组称为“节点”或“顶点”的元素以及它们之间的一组成对关系,例如由社交网络或道路网络确定的关系。几何图出现在广泛的应用中,包括物理学、数据可视化、计算生物学和数据取证。任何这样的图都可以在几何空间中实现,使得图的节点是空间中的点,并且节点之间的关系由连接节点对的线段或曲线来表示。然后,可以根据组合图的这些几何实现如何实现各种参数(例如面积、边长、角度间隔等)来衡量它们。事实上,图绘制的研究领域专门专注于生成良好(忠实且有代表性)的图几何实现的算法。处理几何图的改进方法可以使任何生成或使用几何图的应用程序受益,例如数据可视化或汽车导航。该项目的目标大致围绕以下两个主题组织:(1)生成图的几何实现的算法。该主题针对生成图的几何实现的算法和复杂性界限,包括对面积、边长、边弯曲、边交叉等复杂性度量的考虑。 (2) 几何图的算法。该主题针对以道路网络等输入几何图作为输入的算法,其目标是实现比一般图可能的复杂性界限有所改进。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An FPT Algorithm for Bipartite Vertex Splitting
一种二分顶点分裂的FPT算法
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ahmed, R.;Kobourov, S.;Kryven, M.
- 通讯作者:Kryven, M.
Multi-Priority Graph Sparsification
多优先级图稀疏化
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ahmed, R.;Hamm, K.;Kobourov, S.;Jebelli, M.;Sahneh, F.;Spence, R
- 通讯作者:Spence, R
2D, 2.5D, or 3D? An Exploratory Study on Multilayer Network Visualisations in Virtual Reality
2D、2.5D 还是 3D?
- DOI:10.1109/tvcg.2023.3327402
- 发表时间:2024
- 期刊:
- 影响因子:5.2
- 作者:Feyer, Stefan P.;Pinaud, Bruno;Kobourov, Stephen;Brich, Nicolas;Krone, Michael;Kerren, Andreas;Behrisch, Michael;Schreiber, Falk;Klein, Karsten
- 通讯作者:Klein, Karsten
The Influence of Dimensions on the Complexity of Computing Decision Trees
维数对计算决策树复杂度的影响
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kobourov, S.;Loffler, M.;Montecchiani, F.;Pilipczuk, M;Rutter, I.;Seidel, R.;Sorge, M.
- 通讯作者:Sorge, M.
On the 2-Layer Window Width Minimization Problem
关于2层窗口宽度最小化问题
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bekos, M.;Forster, H.;Kaufmann, M.;Kobourov, S.;Kryven, M.;Kuckuk, A.;Schlipf, L.
- 通讯作者:Schlipf, L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Kobourov其他文献
A Graph Model and a Layout Algorithm for Knitting Patterns
针织花样的图形模型和布局算法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kathryn Gray;Brian Bell;Stephen Kobourov - 通讯作者:
Stephen Kobourov
Stephen Kobourov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Kobourov', 18)}}的其他基金
TRIPODS+X:RES:CollaborativeResearch: Multi-Level Graph Representation for Exploring Big Data
TRIPODS X:RES:CollaborativeResearch:用于探索大数据的多级图表示
- 批准号:
1839274 - 财政年份:2018
- 资助金额:
$ 40.02万 - 项目类别:
Standard Grant
AF:Small:Geometric and Combinatoric Algorithms for Contact and Intersection Representation of Graphs
AF:Small:图的接触和交集表示的几何和组合算法
- 批准号:
1712119 - 财政年份:2017
- 资助金额:
$ 40.02万 - 项目类别:
Standard Grant
EAGER: Geometry and Combinatorics of Intersections and Contacts
EAGER:交叉点和接触点的几何和组合学
- 批准号:
1624382 - 财政年份:2016
- 资助金额:
$ 40.02万 - 项目类别:
Standard Grant
AF:Small:Algorithms for visualizing data with contact graphs and data maps
AF:Small:使用接触图和数据图可视化数据的算法
- 批准号:
1115971 - 财政年份:2011
- 资助金额:
$ 40.02万 - 项目类别:
Standard Grant
Collaborative Research: ImageQuest: Citizens Advancing Biology with Calibrated Imaging and Validated Analysis
合作研究:ImageQuest:公民通过校准成像和验证分析推进生物学发展
- 批准号:
1053573 - 财政年份:2010
- 资助金额:
$ 40.02万 - 项目类别:
Standard Grant
CAREER: Embedding, Morphing, and Visualizing Dynamic Graphs
职业:嵌入、变形和可视化动态图
- 批准号:
0545743 - 财政年份:2006
- 资助金额:
$ 40.02万 - 项目类别:
Continuing Grant
VISUALIZATION: Visualization of Giga-Graphs and Graph Processes
可视化:千兆图和图过程的可视化
- 批准号:
0222920 - 财政年份:2002
- 资助金额:
$ 40.02万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 40.02万 - 项目类别:
Continuing Grant














{{item.name}}会员




