Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data

合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法

基本信息

项目摘要

Cancer is a dynamical evolutionary process, where populations of tumor cells are continuously evolving to compete for resources, to metastasize, and to escape immune responses and therapy. Quantification of cancer evolutionary dynamics is therefore essential to understanding the mechanisms of cancer progression. Single-cell sequencing has enabled characterization of tumor composition at the finest possible resolution, thus providing researchers with the data needed to potentially allow for such quantification. However, to realize this potential, appropriate algorithms and data analysis tools are needed. The computational discipline that extracts evolutionary parameters from genomic data by integrating phylogenetics, population genetics and statistical learning is called phylodynamics. While almost all existing phylodynamics methods are developed for viruses, there is a growing realization that this methodology is also highly relevant to cancer biology. However, the development of cancer phylodynamics algorithms faces many challenges associated with the nature of cancer genomics data. The overarching goal of this proposal is to address these challenges by developing a phylodynamic framework for joint inference of cancer phylogenetic trees and evolutionary parameters from single-cell DNA sequencing (scDNA-Seq) data. This framework will allow cancer researchers to carry out a statistically and computationally sound evaluation of the effects of particular genome alterations or their combinations. In addition, this project will support development of innovative cross-disciplinary curricula, and bioinformatics training for diverse cohorts of undergraduate and graduate students at Georgia State University (Title III designation of Predominantly Black Institution), University of Connecticut, and UConn Health.The project has three interrelated technical aims. First, investigators will develop algorithms for joint reconstruction of clonal frequencies and phased cancer clone genomic profiles (including copy number variation profiles and single nucleotide variants). The project will concentrate on low-coverage scDNA-seq that can provide enough clonal data to guarantee the density of branching events in the cancer phylogenies necessary for phylodynamics analysis. Second, the researchers will design a novel methodology for intra-tumor phylodynamics inference. This includes scalable construction of plausible clone phylogenetic trees using a novel bipartition-based median-tree approach, together with maximum a posteriori inference of cancer fitness and mutability landscapes. The distinguishing feature of the proposed approach is the use of convex optimization techniques rather than MCMC sampling, which will guarantee scalability and accuracy of developed computational tools. Finally, a comprehensive set of experiments will be conducted to validate and assess the accuracy of developed methods. These will include computational experiments on simulated and publicly available scDNA-Seq data, as well as using scDNA-Seq datasets generated by in vitro and in vivo experiments conducted at UConn Health.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
癌症是一个动态的进化过程,其中肿瘤细胞群体不断进化以竞争资源、转移以及逃避免疫应答和治疗。因此,量化癌症演变动力学对于理解癌症进展的机制至关重要。单细胞测序使得能够以最好的分辨率表征肿瘤组成,从而为研究人员提供可能允许这种定量所需的数据。然而,要实现这一潜力,需要适当的算法和数据分析工具。通过整合遗传学、群体遗传学和统计学习从基因组数据中提取进化参数的计算学科被称为遗传动力学。虽然几乎所有现有的生物动力学方法都是针对病毒开发的,但人们越来越认识到这种方法与癌症生物学也高度相关。然而,癌症基因组动力学算法的发展面临着与癌症基因组学数据的性质相关的许多挑战。该提案的总体目标是通过开发一个用于从单细胞DNA测序(scDNA-Seq)数据联合推断癌症系统发育树和进化参数的动态框架来应对这些挑战。这一框架将使癌症研究人员能够对特定基因组改变或其组合的影响进行统计和计算上的合理评估。此外,该项目将支持开发创新的跨学科课程,并为格鲁吉亚州立大学(标题三指定的主要黑人机构),康涅狄格大学和康州大学健康的本科生和研究生提供生物信息学培训。首先,研究人员将开发用于联合重建克隆频率和分期癌症克隆基因组谱(包括拷贝数变异谱和单核苷酸变异)的算法。该项目将专注于低覆盖率的scDNA-seq,它可以提供足够的克隆数据,以保证肿瘤动力学分析所需的癌症基因中分支事件的密度。其次,研究人员将设计一种新的肿瘤内肿瘤动力学推断方法。这包括可扩展的建设合理的克隆系统发育树,使用一种新的基于二分的中位数树的方法,连同最大的后验推理的癌症健身和突变景观。所提出的方法的显着特点是使用凸优化技术,而不是MCMC采样,这将保证开发的计算工具的可扩展性和准确性。最后,将进行一系列全面的实验,以验证和评估所开发方法的准确性。 这些将包括对模拟和公开的scDNA-Seq数据的计算实验,以及使用由康州大学健康中心进行的体外和体内实验生成的scDNA-Seq数据集。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying Biomarkers Using Support Vector Machine to Understand the Racial Disparity in Triple-Negative Breast Cancer
  • DOI:
    10.1089/cmb.2022.0422
  • 发表时间:
    2023-01-30
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Sahoo,Bikram;Pinnix,Zandra;Zelikovsky,Alex
  • 通讯作者:
    Zelikovsky,Alex
Reconstruction of Viral Variants via Monte Carlo Clustering
  • DOI:
    10.1089/cmb.2023.0154
  • 发表时间:
    2023-09-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Juyal,Akshay;Hosseini,Roya;Zelikovsky,Alex
  • 通讯作者:
    Zelikovsky,Alex
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pavel Skums其他文献

Eleven grand challenges in single-cell data science
  • DOI:
    10.1186/s13059-020-1926-6
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    David Lähnemann;Johannes Köster;Ewa Szczurek;Davis J. McCarthy;Stephanie C. Hicks;Mark D. Robinson;Catalina A. Vallejos;Kieran R. Campbell;Niko Beerenwinkel;Ahmed Mahfouz;Luca Pinello;Pavel Skums;Alexandros Stamatakis;Camille Stephan-Otto Attolini;Samuel Aparicio;Jasmijn Baaijens;Marleen Balvert;Buys de Barbanson;Antonio Cappuccio;Giacomo Corleone;Bas E. Dutilh;Maria Florescu;Victor Guryev;Rens Holmer;Katharina Jahn;Thamar Jessurun Lobo;Emma M. Keizer;Indu Khatri;Szymon M. Kielbasa;Jan O. Korbel;Alexey M. Kozlov;Tzu-Hao Kuo;Boudewijn P.F. Lelieveldt;Ion I. Mandoiu;John C. Marioni;Tobias Marschall;Felix Mölder;Amir Niknejad;Alicja Rączkowska;Marcel Reinders;Jeroen de Ridder;Antoine-Emmanuel Saliba;Antonios Somarakis;Oliver Stegle;Fabian J. Theis;Huan Yang;Alex Zelikovsky;Alice C. McHardy;Benjamin J. Raphael;Sohrab P. Shah;Alexander Schönhuth
  • 通讯作者:
    Alexander Schönhuth

Pavel Skums的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pavel Skums', 18)}}的其他基金

Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Standard Grant
CAREER: Addressing Algorithmic Challenges in Computational Genomic Epidemiology
职业:解决计算基因组流行病学中的算法挑战
  • 批准号:
    2415564
  • 财政年份:
    2023
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Continuing Grant
CAREER: Addressing Algorithmic Challenges in Computational Genomic Epidemiology
职业:解决计算基因组流行病学中的算法挑战
  • 批准号:
    2047828
  • 财政年份:
    2021
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336768
  • 财政年份:
    2024
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 49.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了