Collaborative Research: CNS Core: Medium: Terabyte-scale Tiered Memory Management

合作研究:CNS 核心:中:TB 级分层内存管理

基本信息

  • 批准号:
    2212580
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

As application demand for memory increases at an explosive pace, we witness a slowdown in the rate at which the currently dominant computer memory technology ("DRAM") scales up in capacity. This growing gap leads to a need for large-capacity memory systems that either disaggregate the DRAM memory components across a network, or adopt a memory technology that offers higher capacity than DRAM but at slower performance. This trend toward larger memories that are split into different performance tiers within a single compute node poses challenges that current memory management mechanisms and techniques cannot keep up with. The critical challenges include how to characterize the memory behavior of applications and workloads and how, when, and where to place and migrate data with low performance, energy, and monetary overhead. This research project will explore these fundamental challenges and develop and evaluate solutions specifically for these large-scale, tiered memory systems. To be most effective, these solutions will span both the computer hardware (i.e., the processor and memory modules) and system software (i.e., the operating system). The combined hardware-software research approach, along with continuous prototyping of the proposed solutions, ensures that the challenges targeted are real and that the solutions will have impact not only on academia, but also on industry and end users. This research is timely and necessary because a comprehensive, low-overhead, tiered memory management system is a prerequisite for unleashing the potential of emerging memory technologies. These technologies are, in turn, necessary, especially for cloud computing, to achieve the performance levels needed for applications, while keeping costs, both monetary and environmental, low. First, the effective use of tiered memories will both reduce the number of memory components installed in systems, thus reducing the embedded and operational carbon associated with them. Second, the developed management techniques will enable a single computing node to successfully serve a higher application load, reducing the carbon footprint of compute as well as memory. Other societal benefits include the unique training this hardware-software research project will provide to students, including undergraduate and graduate students. The project also has a high likelihood of broadening participation in computing. The primary investigators on this project have a track record of advising female students; the participating universities are committed to broadening participation; and the student recruitment environment benefits from a large number of students from groups that are historically underrepresented in computer technology. The University of Texas at Austin is a recognized Hispanic-Serving University.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着应用程序对存储器的需求以爆炸性的速度增长,我们目睹了当前占主导地位的计算机存储器技术(“DRAM”)在容量上按比例增加的速度放缓。这种不断增长的差距导致对大容量存储器系统的需求,这些系统要么在网络上分解DRAM存储器组件,要么采用提供比DRAM更高容量但性能更低的存储器技术。这种在单个计算节点内划分为不同性能层的更大存储器的趋势提出了当前存储器管理机制和技术无法跟上的挑战。关键挑战包括如何表征应用程序和工作负载的内存行为,以及如何、何时和在何处放置和迁移数据,同时降低性能、能源和资金开销。本研究项目将探索这些基本挑战,并开发和评估专门针对这些大规模分层内存系统的解决方案。为了最有效,这些解决方案将跨越计算机硬件(即,处理器和存储器模块)和系统软件(即,操作系统)。结合硬件和软件的研究方法,沿着持续的解决方案原型设计,确保了目标挑战是真实的,解决方案不仅对学术界,而且对行业和最终用户都有影响。这项研究是及时和必要的,因为一个全面的,低开销的,分层的内存管理系统是释放新兴内存技术的潜力的先决条件。反过来,这些技术是必要的,特别是对于云计算,以实现应用程序所需的性能水平,同时保持货币和环境成本低。首先,分层存储器的有效使用将减少系统中安装的存储器组件的数量,从而减少与它们相关的嵌入式和操作碳。其次,开发的管理技术将使单个计算节点能够成功地为更高的应用程序负载提供服务,减少计算和内存的碳足迹。其他社会效益包括独特的培训,这个硬件-软件研究项目将提供给学生,包括本科生和研究生。该项目还很有可能扩大对计算的参与。该项目的主要调查人员有为女学生提供咨询的记录;参与的大学致力于扩大参与;学生招聘环境受益于来自历史上在计算机技术方面代表性不足的群体的大量学生。德克萨斯大学奥斯汀分校是一所公认的西班牙裔服务大学。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Peter其他文献

Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study.
基于人工智能的病理学作为肝细胞癌患者对 atezolizumab-bevacizumab 敏感性的生物标志物:一项多中心回顾性研究。
  • DOI:
    10.1016/s1470-2045(23)00468-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qinghe Zeng;Christophe Klein;Stefano Caruso;Pascale Maille;Daniela S. Allende;Beatriz Mínguez;Massimo Iavarone;Massih Ningarhari;A. Casadei‐Gardini;F. Pedica;M. Rimini;R. Perbellini;Camille Boulagnon;A. Heurgué;Marco Maggioni;Mohamed Rela;M. Vij;S. Baulande;P. Legoix;S. Lameiras;Léa Bruges;Viviane Gnemmi;J. Nault;C. Campani;Hyungjin Rhee;Young Nyun Park;M. Iñarrairaegui;Guillermo García;J. Argemí;B. Sangro;A. D’Alessio;B. Scheiner;D. Pinato;M. Pinter;Valérie Paradis;A. Beaufrère;Simon Peter;L. Rimassa;L. di Tommaso;A. Vogel;Sophie Michalak;J. Boursier;N. Loménie;Marianne Ziol;J. Calderaro;G. Amaddeo;María Bermúdez;Andres Castano Garcia;S. L. Chan;Alba Díaz;A. Digklia;Jean;N. Ghaffari Laleh;P. Gopal;Rondell P. Graham;Jakob Nikolas Kather;I. Labgaa;M. Lequoy;Howard Ho;Juan Ignacio Marín;Guillermo Mendoza;O. El Nahhas;P. Navale;J. Pawlotsky;P. Radu;H. Regnault;M. Reig;M. Salcedo;Christine Sempoux;Tung;Callie Torres;Nguyen H. Tran;E. Trépo;María Varela;G. Verset;D. Wendum
  • 通讯作者:
    D. Wendum
FRI-492-YI Tumor cell lines and patient derived xenograft models of intrahepatic cholangiocarcinoma maintain histology, transcription profiles and driver mutations of primary tumor but lose human stroma
  • DOI:
    10.1016/s0168-8278(24)01348-5
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Denise Schlösser;Georgina Schumann;Simon Peter;Hanna Redeker;Tanja Reineke-Plaaß;Florian Vondran;Nora Nevermann;Stephan Bartels;Ulrich Lehmann-Mühlenhoff;Geffers Robert;Doan Duy Hai Tran;Anna Saborowski;Arndt Vogel
  • 通讯作者:
    Arndt Vogel
SAT579 - Characterization and clinical correlation of the immune contexture in intrahepatic cholangiocarcinoma using multiplex immunohistochemistry
SAT579 - 使用多重免疫组化技术对肝内胆管癌免疫微环境的特征和临床相关性进行分析
  • DOI:
    10.1016/s0168-8278(22)02136-5
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
    33.000
  • 作者:
    Simon Peter;Valery Volk;Charlotte Hoffmann;Melanie Bathon;Benjamin Goeppert;Thomas Longerich;Thomas Albrecht;Tanja Reineke-Plaaß;Friedrich Feuerhake;Arndt Vogel;Anna Saborowski
  • 通讯作者:
    Anna Saborowski
Resource management in a multicore operating system
  • DOI:
    10.3929/ethz-a-007579246
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Peter
  • 通讯作者:
    Simon Peter
Ingens: Huge Page Support for the OS and Hypervisor
Ingens:操作系统和虚拟机管理程序的大页面支持
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Youngjin Kwon;Hangchen Yu;Simon Peter;Christopher J. Rossbach;Emmett Witchel
  • 通讯作者:
    Emmett Witchel

Simon Peter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Peter', 18)}}的其他基金

CNS Core: Medium: Collaborative Research: Cross Layer File Systems
CNS 核心:媒介:协作研究:跨层文件系统
  • 批准号:
    2227132
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: Scalable ACID Transactions for Persistent Memory Databases
合作研究:CNS 核心:小型:持久内存数据库的可扩展 ACID 事务
  • 批准号:
    2227066
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
RINGS: Power Resilient NextG Data Centers
RINGS:电力弹性 NextG 数据中心
  • 批准号:
    2148209
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: High-Performance Packet Processing with Programmable NIC Data-Planes
职业:使用可编程 NIC 数据平面进行高性能数据包处理
  • 批准号:
    2226057
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: Scalable ACID Transactions for Persistent Memory Databases
合作研究:CNS 核心:小型:持久内存数据库的可扩展 ACID 事务
  • 批准号:
    2008884
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Collaborative Research: Cross Layer File Systems
CNS 核心:媒介:协作研究:跨层文件系统
  • 批准号:
    1900457
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: High-Performance Packet Processing with Programmable NIC Data-Planes
职业:使用可编程 NIC 数据平面进行高性能数据包处理
  • 批准号:
    1751231
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了