Prediction of Thermal Transport in Nonmetallic Materials at Ultra-high Temperatures

超高温下非金属材料的热传输预测

基本信息

  • 批准号:
    2212830
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The development of many cutting-edge technologies requires an ultra-high-temperature working environment. For example, the next-generation gas turbines need to be able to work at 1300 degrees Celsius, to boost efficiency and save energy. The next-generation hypersonic passenger aircraft and re-entry vehicles need to withstand 1000-3000 degrees Celsius at the leading edges without material loss. The next-generation nuclear fission plant and other thermal power plants are desired to work at higher temperatures for higher energy-conversion efficiency and lower greenhouse gas emissions. The development of future fusion plants requires even higher temperatures. All these technologies require effective management of heat flow at ultra-high temperatures. However, the fundamental thermal transport processes in materials at ultra-high temperatures remain unclear. It is therefore necessary to develop theories to gain a deep understanding and conduct simulations to accurately predict thermal transport at ultra-high temperatures in order to realize technology revolutions. This project addresses a critical issue in thermal transport: state-of-the-art theories significantly underpredict the thermal conductivity of most crystals at room temperature and further worsen as the temperature increases.The goal of this project is to unveil the fundamental thermal transport mechanisms and accurately predict the thermal conductivity of nonmetallic materials from low to ultra-high temperatures. The proposal envisions three major foci: (i) incorporate the fully temperature-dependent interatomic interaction into the predictions and validate the proof-of-concept finding that such effort can generally solve the universal thermal conductivity under-prediction problem at high temperatures; (ii) develop formalisms for five-heat carrier interaction processes, which can be important at high temperatures; (iii) develop a method that can fully predict the photon contribution to thermal transport in solids through accurate prediction of the dielectric function. The project will enable five-heat carrier interaction predictions, which will be potentially transformative because they are intrinsic thermal transport mechanisms in all solids and have been elusive to scientists for decades. It will answer two pressing questions: In general solids, at what temperatures is the five-heat carrier interaction important? At low temperatures, in which systems is the five-heat carrier interaction important? This project will also rigorously predict and validate the thermal radiation contribution to thermal conductivity at high temperatures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多尖端技术的发展都需要超高温的工作环境。例如,下一代燃气轮机需要能够在1300摄氏度下工作,以提高效率并节省能源。下一代高超音速客机和再入飞行器需要在前缘承受1000-3000摄氏度的高温而不发生材料损失。下一代核裂变工厂和其他火力发电厂希望在更高的温度下工作,以获得更高的能量转换效率和更低的温室气体排放。未来核聚变工厂的发展需要更高的温度。所有这些技术都需要在超高温下对热流进行有效管理。然而,材料在超高温下的基本热输运过程仍不清楚。因此,有必要发展理论以获得深刻的理解,并进行模拟以准确预测超高温下的热传输,以实现技术革命。该项目旨在解决热传输中的一个关键问题:最先进的理论大大低估了大多数晶体在室温下的热导率,并随着温度的升高而进一步恶化。该项目的目标是揭示基本的热传输机制,并准确预测非金属材料从低温到超高温的热导率。该提案设想了三个主要焦点:(i)将完全依赖于温度的原子间相互作用纳入预测,并验证概念验证发现,即这种努力通常可以解决高温下普遍存在的热导率预测不足问题;(ii)开发五热载体相互作用过程的形式化,这在高温下可能很重要;开发一种方法,通过准确预测介电函数,充分预测光子对固体热输运的贡献。该项目将实现五种热载体相互作用的预测,这将是潜在的变革,因为它们是所有固体中固有的热传输机制,几十年来科学家们一直难以捉摸。它将回答两个紧迫的问题:在一般固体中,在什么温度下五热载体相互作用是重要的?在低温下,在哪些系统中,五种热载体的相互作用是重要的?该项目还将严格预测和验证高温下热辐射对热导率的贡献。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tianli Feng其他文献

Stakeholder Influences and Organization Responses:A Case Study of Corporation Social Responsibility Suspension
利益相关者影响与组织反应:企业社会责任暂缓案例研究
Sub-3 nm Intermetallic ordered Pt3In Clusters for Oxygen Reduction Reaction
用于氧还原反应的亚 3 nm 金属间化合物有序 Pt3In 团簇
  • DOI:
    10.1002/advs.201901279
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Qi Wang;Zhi Liang Zhao;Zhe Zhang;Tianli Feng;Ruyi Zhong;Hu Xu;Sokrates T. Pantelides;Meng Gu
  • 通讯作者:
    Meng Gu
Realizing high thermoelectric performance in eco-friendly Bi<sub>2</sub>S<sub>3</sub> with nanopores and Cl-doping through shape-controlled nano precursors
  • DOI:
    10.1016/j.nanoen.2022.107478
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Kangpeng Jin;Janak Tiwari;Tianli Feng;Yue Lou;Biao Xu
  • 通讯作者:
    Biao Xu
Impacts of point defects on shallow doping in cubic boron arsenide: A first principles study
  • DOI:
    10.1016/j.commatsci.2024.113483
  • 发表时间:
    2025-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Shuxiang Zhou;Zilong Hua;Kaustubh K. Bawane;Hao Zhou;Tianli Feng
  • 通讯作者:
    Tianli Feng
Large-Scale, Solution-Synthesized Nanostructured Composites for Thermoelectric Applications
用于热电应用的大规模溶液合成纳米结构复合材料
  • DOI:
    10.1002/adma.201801904
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Biao Xu;Tianli Feng;Zhe Li;Wei Zheng;Yue Wu
  • 通讯作者:
    Yue Wu

Tianli Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tianli Feng', 18)}}的其他基金

CAREER: Prediction and understanding of thermal transport across successive interfaces
职业:预测和理解连续界面上的热传输
  • 批准号:
    2337749
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant

相似国自然基金

Thermal-lag自由活塞斯特林发动机启动与可持续运行机理研究
  • 批准号:
    51806227
  • 批准年份:
    2018
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Thermal Transport in Polymer Nanofibers under Strain Modulation
职业:应变调制下聚合物纳米纤维的热传输
  • 批准号:
    2340208
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Enhancement of interfacial thermal transport through evanescent electric field mediated acoustic phonon transmission for efficient cooling of high power Gallium Nitride devices
通过瞬逝电场介导的声声子传输增强界面热传输,以实现高功率氮化镓器件的高效冷却
  • 批准号:
    2336038
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CAREER: Prediction and understanding of thermal transport across successive interfaces
职业:预测和理解连续界面上的热传输
  • 批准号:
    2337749
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
CDS&E: Coupled Electro-Thermal Transport in Two-Dimensional Materials and Heterostructures
CDS
  • 批准号:
    2302879
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Reveal of thermal transport in disordered materials with local order and hierarchical structure by topological and network approaches
通过拓扑和网络方法揭示具有局部有序和分层结构的无序材料中的热传输
  • 批准号:
    23H01360
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collective Dynamics and Resonances of Phonons and Dislocations in Thermal Transport
热传输中声子和位错的集体动力学和共振
  • 批准号:
    2121895
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Quantum magnetic and thermal transport by pi-electron spin
π电子自旋的量子磁和热传输
  • 批准号:
    23K17906
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Understanding Thermal Transport Properties in Electrically Conductive Polymers
了解导电聚合物的热传输特性
  • 批准号:
    2312559
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
  • 批准号:
    2321302
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了