Formulating a theoretical scaling for dispersion in MHD turbulence

制定 MHD 湍流中色散的理论标度

基本信息

项目摘要

One of the most fundamental aspects of turbulent flows is dispersion – a measure of how particles spread out. In electrically neutral fluids such as air and water, dispersion determines how moisture, particulates, or chemicals mix into the atmosphere or oceans. Other fluids, like liquid metals and plasmas, can carry an electrical charge. Their movement is fundamentally changed by the presence of magnetic fields and is described by magnetohydrodynamics. Dispersion in magnetohydrodynamic fluids determines the properties of space weather as plasma spreads in the interstellar medium, how chemicals from the core of a star are mixed into its outer layers, and how particles are trapped in the liquid metal blankets of reactors. The goal of this project is to provide a clear understanding of how magnetohydrodynamic dispersion differs from dispersion in the hydrodynamic case observed in air or water. This project will include summer research students, a computational physics outreach program using scientific visualizations and computer renderings, and technical training for the scientific/industrial work force.This project will leverage modern ideas and theoretical techniques to modify and extend the theory of dispersion, developed by Richardson in 1926 for hydrodynamic fluids, to the setting of magnetohydrodynamic fluids. Testing our new prediction will require simulations that are particularly intensive; these simulations will be performed on some of the largest supercomputers in the world. The simulation data will allow our theoretical results to probe questions of foundational importance for magnetohydrodynamic turbulence. These include how a turbulent flow develops a preferred direction of movement, and how different parts of the flow interact energetically. The results of our theoretical and computational investigation will allow engineers to design more efficient reactors, and astronomers to better predict the space weather that impacts life on Earth.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流最基本的方面之一是弥散--一种颗粒如何扩散的量度。 在电中性流体(如空气和水)中,分散决定了水分、颗粒或化学物质如何混入大气或海洋。 其他流体,如液态金属和等离子体,可以携带电荷。 磁场的存在从根本上改变了它们的运动,并由磁流体力学描述。 当等离子体在星际介质中扩散时,磁流体中的分散决定了空间天气的性质,决定了星星核心的化学物质如何混合到外层,以及决定了粒子如何被困在反应堆的液态金属层中。 这个项目的目标是提供一个清晰的理解,如何磁流体动力学分散不同于分散在空气或水中观察到的流体动力学的情况下。 该项目将包括暑期研究生,使用科学可视化和计算机渲染的计算物理推广计划,以及科学/工业劳动力的技术培训。该项目将利用现代思想和理论技术来修改和扩展Richardson于1926年为流体动力学流体开发的分散理论,以适应磁流体动力学流体。 测试我们的新预测将需要特别密集的模拟;这些模拟将在世界上一些最大的超级计算机上进行。 模拟数据将允许我们的理论结果,以探索磁流体动力学湍流的基础重要性的问题。 这些包括湍流如何发展一个优选的运动方向,以及流动的不同部分如何在能量上相互作用。 我们的理论和计算研究结果将使工程师能够设计出更高效的反应堆,天文学家能够更好地预测影响地球生命的空间天气。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jane Pratt其他文献

Bibliographic Note This Report Draws on a Wide Range of World Bank Docu- Ments and on Numerous outside Sources. Background Pa- Pers and Notes Were Prepared
参考文献 本报告广泛引用了世界银行的文件和众多外部来源。
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sherburne Abbott;Alain Bertaud;J. Brakarz;K. A. Brekke;T. Campbell;Roberto Chávez;M. Gupta;J. Dixon;S. Gates;N. P. Gleditsch;R. Hannesson;K. Hoff;Pernille Holtedahl;Eckard Janeba;J. Kellenberg;S. Kuhnle;Huck;D. McNeill;Edgar Ortiz Mtialavasi;S. Murshed;E. Neumayer;J. Pantelić;Sanjeevi Prakash;Jane Pratt;P. Selle;Guttorm Schjeldrup;H. Vennemo;Nicolas Sambanis;Paul Steinberg;A. Tesli;Ahmed Zainabi;Ivar Andersen;Jock R. Anderson;S. Angel;W. Ascher;Robert Bacon;D. Baharoglu;Tulio Barbosa;Carl Bartone;R. Barrows;Esra Bennathan;Derek Beyerlee;A. Bigio;H. Binswanger;Pieter Buys;F. Cardy;Christophe Chamley;Nadereh Chamlou;Ajay Chhibber;Tanzib Chowdhury;H. M. Chung;Dean A. Cira;Kevin Cleaver;Csabi Csabi;P. Dasgupta;Klaus Deininger;Shantayanan Devarajan;S. Djankov;Ahmed A. R. Eiweida;Enos E. Esikuri;Shahrokh Fardoust;C. Farvacque;Hafez Ghanem;I. Gill;Sumila Gulyani;Rognvaldur Hamnesson;Jarle Harstad;V. Jagannathan;Olga B. Jonas;D. Kaimowitz;Hirochi Kawashima;P. Keefer;C. Kenny;Homi J. Kharas;Eliza G. King;K. King;N. Kishor;A. Kiss;Stephen F. Knack;S. Lall;M. Lantin;Frannie A. Léautier;F. Lecocq;Johannes F. Linn;J. Leitmann;A. Liebenthal;Stephen Malpezzi;R. Mearns;G. Menkhoff;Fatema Mernissi;Alana Miller;Pradeep Mitra;A. Molnar;Caroline Moser;M. Munasinghe;M. Nabli;Aksel Naerstad;Andrew Nelson;M. V. Nieuwkoop;L. Obeng;A. Ortiz;Edgar Ortiz;A. Osborn;E. Ostrom;M. Over;S. Pagiola;G. Perry;Guy Pfefferman;Robert Picciotto;R. Prescott;L. Pritchett;F. Proctor;C. Rajasingham;V. Rao;J. Redwood;F. Reifschneider;Ritva Reinikka;F. Remy;J. Ritzen;F. H. Rogers;David Rosen;Michael L. Ross;I. Ruthenberg;M. Sarraf;D. Satterthwaite;S. Scherr;Richard Scur;L. Scura;L. Serven;C. Shalizi;P. Shyamsundar;David Simpson;A. Steer;V. Suri;Lee Travers;T. Thomas;T. Tietenberg;J. Toll;T. Tomich;J. Underwood;K. Varma;J. Vincent;T. Vishwanath;J. V. Amsberg;M. Walton;Hua Wang;R. Watson;J. Webbe;M. Weber;Anna Wellenstein;A. Whitten;J. Williamson;R. White;Julie G. Viloria;M. Woolcock;S. Wunder;C. Cadman;Kristyn Ebro;Lawrence MacDonald;J. Msuya
  • 通讯作者:
    J. Msuya

Jane Pratt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jane Pratt', 18)}}的其他基金

CDS&E: Feedback of energetic particles on plasma turbulence
CDS
  • 批准号:
    1907876
  • 财政年份:
    2019
  • 资助金额:
    $ 30.52万
  • 项目类别:
    Standard Grant

相似海外基金

Theoretical Models of Shape Formation: Analysis, Geometry and Energy Scaling Laws
形状形成的理论模型:分析、几何和能量缩放定律
  • 批准号:
    1406730
  • 财政年份:
    2014
  • 资助金额:
    $ 30.52万
  • 项目类别:
    Standard Grant
Computational and theoretical study of parameter scaling in particle systems
粒子系统参数标度的计算和理论研究
  • 批准号:
    1319462
  • 财政年份:
    2013
  • 资助金额:
    $ 30.52万
  • 项目类别:
    Standard Grant
Theoretical study on dynamics of 12C synthesis through radiative capture reactions of three alpha-particles
三种α粒子辐射捕获反应合成12C动力学的理论研究
  • 批准号:
    24540261
  • 财政年份:
    2012
  • 资助金额:
    $ 30.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The theoretical basis for near 3/4 power scaling across ecosystemsof the world
全球生态系统近 3/4 功率缩放的理论基础
  • 批准号:
    434692-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 30.52万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Parasites and Communities; Empirical and Theoretical Scaling
寄生虫和群落;
  • 批准号:
    NE/G015201/1
  • 财政年份:
    2010
  • 资助金额:
    $ 30.52万
  • 项目类别:
    Research Grant
Parasites and Communities; Empirical and Theoretical Scaling
寄生虫和群落;
  • 批准号:
    NE/G015236/1
  • 财政年份:
    2010
  • 资助金额:
    $ 30.52万
  • 项目类别:
    Research Grant
Parasites and Communities; Empirical and Theoretical Scaling
寄生虫和群落;
  • 批准号:
    NE/G01521X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 30.52万
  • 项目类别:
    Research Grant
Theoretical Study of Two Dimensional Electronic States in Random Magnetic Fields and Their Transport
随机磁场中二维电子态及其输运的理论研究
  • 批准号:
    14540317
  • 财政年份:
    2002
  • 资助金额:
    $ 30.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Research of Sof-dipole Resonances in Light Neutron-Rich Nuclei
轻富中子核中软偶极子共振的理论研究
  • 批准号:
    12640246
  • 财政年份:
    2000
  • 资助金额:
    $ 30.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Study of Two-Dimensional Electronic States in a Random Magnetic Field
随机磁场中二维电子态的理论研究
  • 批准号:
    10640321
  • 财政年份:
    1998
  • 资助金额:
    $ 30.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了