Formulating a theoretical scaling for dispersion in MHD turbulence
制定 MHD 湍流中色散的理论标度
基本信息
- 批准号:2212958
- 负责人:
- 金额:$ 30.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
One of the most fundamental aspects of turbulent flows is dispersion – a measure of how particles spread out. In electrically neutral fluids such as air and water, dispersion determines how moisture, particulates, or chemicals mix into the atmosphere or oceans. Other fluids, like liquid metals and plasmas, can carry an electrical charge. Their movement is fundamentally changed by the presence of magnetic fields and is described by magnetohydrodynamics. Dispersion in magnetohydrodynamic fluids determines the properties of space weather as plasma spreads in the interstellar medium, how chemicals from the core of a star are mixed into its outer layers, and how particles are trapped in the liquid metal blankets of reactors. The goal of this project is to provide a clear understanding of how magnetohydrodynamic dispersion differs from dispersion in the hydrodynamic case observed in air or water. This project will include summer research students, a computational physics outreach program using scientific visualizations and computer renderings, and technical training for the scientific/industrial work force.This project will leverage modern ideas and theoretical techniques to modify and extend the theory of dispersion, developed by Richardson in 1926 for hydrodynamic fluids, to the setting of magnetohydrodynamic fluids. Testing our new prediction will require simulations that are particularly intensive; these simulations will be performed on some of the largest supercomputers in the world. The simulation data will allow our theoretical results to probe questions of foundational importance for magnetohydrodynamic turbulence. These include how a turbulent flow develops a preferred direction of movement, and how different parts of the flow interact energetically. The results of our theoretical and computational investigation will allow engineers to design more efficient reactors, and astronomers to better predict the space weather that impacts life on Earth.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湍流最基本的方面之一是分散 - 衡量颗粒的分布方式。在空气和水等电中性液体中,分散确定水分,成分或化学物质如何混合到大气或海洋中。其他流体,例如液体金属和等离子体,可以携带电荷。它们的运动从根本上通过磁场的存在改变,并用磁流体动力学描述。随着血浆在星际介质中扩散,恒星核心的化学物质如何将其混合到其外层中,以及如何将颗粒捕获在反应堆的液态金属毯中,磁性水力动力流体的分散确定了太空天气的特性。该项目的目的是清楚地了解磁流体动力分散与在空气或水中观察到的流体动力学病例中的分散剂的不同。该项目将包括夏季研究专业的学生,使用科学可视化和计算机效果图的计算物理外展计划,以及对科学/工业劳动力的技术培训。该项目将利用现代思想和理论技术来修改和扩展1926年理查德(Richardson)在1926年开发的和扩展磁性流体的磁性流体,以进行磁性流体动力。测试我们的新预测将需要特别密集的模拟;这些模拟将对世界上一些最大的超级计算机进行。模拟数据将使我们的理论结果探究对磁流体动力湍流的基础重要性问题。其中包括湍流如何发展出首选的运动方向,以及流动的不同部分如何有效相互作用。我们的理论和计算调查结果将使工程师能够设计更有效的反应堆,而天文学家可以更好地预测影响地球生命的太空天气。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响标准来评估通过评估来诚实地对其进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane Pratt其他文献
Bibliographic Note This Report Draws on a Wide Range of World Bank Docu- Ments and on Numerous outside Sources. Background Pa- Pers and Notes Were Prepared
参考文献 本报告广泛引用了世界银行的文件和众多外部来源。
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Sherburne Abbott;Alain Bertaud;J. Brakarz;K. A. Brekke;T. Campbell;Roberto Chávez;M. Gupta;J. Dixon;S. Gates;N. P. Gleditsch;R. Hannesson;K. Hoff;Pernille Holtedahl;Eckard Janeba;J. Kellenberg;S. Kuhnle;Huck;D. McNeill;Edgar Ortiz Mtialavasi;S. Murshed;E. Neumayer;J. Pantelić;Sanjeevi Prakash;Jane Pratt;P. Selle;Guttorm Schjeldrup;H. Vennemo;Nicolas Sambanis;Paul Steinberg;A. Tesli;Ahmed Zainabi;Ivar Andersen;Jock R. Anderson;S. Angel;W. Ascher;Robert Bacon;D. Baharoglu;Tulio Barbosa;Carl Bartone;R. Barrows;Esra Bennathan;Derek Beyerlee;A. Bigio;H. Binswanger;Pieter Buys;F. Cardy;Christophe Chamley;Nadereh Chamlou;Ajay Chhibber;Tanzib Chowdhury;H. M. Chung;Dean A. Cira;Kevin Cleaver;Csabi Csabi;P. Dasgupta;Klaus Deininger;Shantayanan Devarajan;S. Djankov;Ahmed A. R. Eiweida;Enos E. Esikuri;Shahrokh Fardoust;C. Farvacque;Hafez Ghanem;I. Gill;Sumila Gulyani;Rognvaldur Hamnesson;Jarle Harstad;V. Jagannathan;Olga B. Jonas;D. Kaimowitz;Hirochi Kawashima;P. Keefer;C. Kenny;Homi J. Kharas;Eliza G. King;K. King;N. Kishor;A. Kiss;Stephen F. Knack;S. Lall;M. Lantin;Frannie A. Léautier;F. Lecocq;Johannes F. Linn;J. Leitmann;A. Liebenthal;Stephen Malpezzi;R. Mearns;G. Menkhoff;Fatema Mernissi;Alana Miller;Pradeep Mitra;A. Molnar;Caroline Moser;M. Munasinghe;M. Nabli;Aksel Naerstad;Andrew Nelson;M. V. Nieuwkoop;L. Obeng;A. Ortiz;Edgar Ortiz;A. Osborn;E. Ostrom;M. Over;S. Pagiola;G. Perry;Guy Pfefferman;Robert Picciotto;R. Prescott;L. Pritchett;F. Proctor;C. Rajasingham;V. Rao;J. Redwood;F. Reifschneider;Ritva Reinikka;F. Remy;J. Ritzen;F. H. Rogers;David Rosen;Michael L. Ross;I. Ruthenberg;M. Sarraf;D. Satterthwaite;S. Scherr;Richard Scur;L. Scura;L. Serven;C. Shalizi;P. Shyamsundar;David Simpson;A. Steer;V. Suri;Lee Travers;T. Thomas;T. Tietenberg;J. Toll;T. Tomich;J. Underwood;K. Varma;J. Vincent;T. Vishwanath;J. V. Amsberg;M. Walton;Hua Wang;R. Watson;J. Webbe;M. Weber;Anna Wellenstein;A. Whitten;J. Williamson;R. White;Julie G. Viloria;M. Woolcock;S. Wunder;C. Cadman;Kristyn Ebro;Lawrence MacDonald;J. Msuya - 通讯作者:
J. Msuya
Jane Pratt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jane Pratt', 18)}}的其他基金
CDS&E: Feedback of energetic particles on plasma turbulence
CDS
- 批准号:
1907876 - 财政年份:2019
- 资助金额:
$ 30.52万 - 项目类别:
Standard Grant
相似国自然基金
基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
- 批准号:52306105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代数K理论、代数数论及其在编码密码中的应用
- 批准号:12371035
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
面向六自由度交互的沉浸式视频感知编码理论与方法研究
- 批准号:62371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
一类双色散非局部波动方程初值问题的理论研究
- 批准号:12301272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理-数据混合驱动的复杂曲面多模态视觉检测理论与方法
- 批准号:52375516
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Theoretical Models of Shape Formation: Analysis, Geometry and Energy Scaling Laws
形状形成的理论模型:分析、几何和能量缩放定律
- 批准号:
1406730 - 财政年份:2014
- 资助金额:
$ 30.52万 - 项目类别:
Standard Grant
Computational and theoretical study of parameter scaling in particle systems
粒子系统参数标度的计算和理论研究
- 批准号:
1319462 - 财政年份:2013
- 资助金额:
$ 30.52万 - 项目类别:
Standard Grant
Theoretical study on dynamics of 12C synthesis through radiative capture reactions of three alpha-particles
三种α粒子辐射捕获反应合成12C动力学的理论研究
- 批准号:
24540261 - 财政年份:2012
- 资助金额:
$ 30.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The theoretical basis for near 3/4 power scaling across ecosystemsof the world
全球生态系统近 3/4 功率缩放的理论基础
- 批准号:
434692-2012 - 财政年份:2012
- 资助金额:
$ 30.52万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Parasites and Communities; Empirical and Theoretical Scaling
寄生虫和群落;
- 批准号:
NE/G015201/1 - 财政年份:2010
- 资助金额:
$ 30.52万 - 项目类别:
Research Grant