MPS-Ascend: Ergodic Schrödinger Operators and Quasicrystals
MPS-Ascend:遍历薛定谔算子和准晶体
基本信息
- 批准号:2213277
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). PI Takase is awarded a National Science Foundation Mathematical and Physical Sciences Ascending Postdoctoral Research Fellowship (NSF MPS-Ascend) to conduct a program of research and activities related to broaden participation by groups underrepresented in STEM. This fellowship to Dr. Takase supports the research project entitled "MPS-Ascend: Ergodic Schrödinger Operators and Quasicrystals", under the mentorship of two sponsoring scientists. At the first host institution, Michigan State University, Dr. Takase will work with the sponsoring scientist Dr. Ilya Kachkovskiy, from August 2022 through July 2023. Dr. David Damanik will be Dr. Takase’s sponsoring scientist at Rice University from August 2023 through July 2025. The goal of this project is to investigate the spectral theory of ergodic Schrödinger operators, with a focus on explicit multi-dimensional operators that appear in quantum mechanics to model physical phenomena. The PI plans to study Laplacians on Penrose tilings to describe the topological structure of the spectrum, continuity of spectral characteristics of Schrödinger operators as the coupling constant approaches zero, and ergodic Schrödinger operators with separable potentials. The PI plans to engage with undergraduate research mentorship and professional development activities through directed reading programs. To broaden participation in mathematical and physical sciences, Dr. Takase brings insights from his own experience as a Mellon Mays Undergraduate Fellow and his engagement with middle school outreach as a graduate student member of a community educational outreach program called Math CEO. He has participated in several outreach activities at HSIs and HBCUs and plans to continue these initiatives in future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自《2021年美国救援计划法案》(公法117-2)。Pi Takase被授予国家科学基金会数学和物理科学提升博士后研究奖学金(NSF MPS-Ascend),以开展一项与扩大STEM中代表性不足的群体的参与相关的研究和活动。Takase博士的这笔奖学金支持在两名赞助科学家的指导下进行的名为“MPS-Ascend:遍历薛定谔算符和准晶”的研究项目。在第一个主办机构密歇根州立大学,高ase博士将在2022年8月至2023年7月期间与发起研究的科学家伊利亚·卡奇科夫斯基博士合作。David Damanik博士将在2023年8月至2025年7月期间担任Takase博士在莱斯大学的赞助科学家。这个项目的目标是研究遍历薛定谔算符的谱理论,重点是出现在量子力学中用来模拟物理现象的显式多维算符。PI计划研究Penrose瓦片上的拉普拉斯算子,以描述谱的拓扑结构、当耦合常数趋于零时薛定谔算子的谱特征的连续性以及具有可分势的遍历薛定谔算子。PI计划通过定向阅读计划参与本科生研究、指导和职业发展活动。为了扩大对数学和物理科学的参与,Takase博士从自己作为梅隆大学本科生研究员的经历,以及作为社区教育推广项目Math CEO的研究生成员参与中学推广活动中获得了见解。他参与了HSIS和HBCU的几项外展活动,并计划在未来继续这些活动。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alberto Takase其他文献
On the Spectra of Separable 2D Almost Mathieu Operators
- DOI:
10.1007/s00023-021-01080-x - 发表时间:
2020-12 - 期刊:
- 影响因子:0
- 作者:
Alberto Takase - 通讯作者:
Alberto Takase
Spectral estimates of dynamically-defined and amenable operator families
动态定义且适用的算子族的频谱估计
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Siegfried Beckus;Alberto Takase - 通讯作者:
Alberto Takase
Alberto Takase的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
- 批准号:
2316167 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
- 批准号:
2316538 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
- 批准号:
2316666 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: The Early Universe Laboratory: Primordial Phenomena as Probes of New Physics
博士后奖学金:MPS-Ascend:早期宇宙实验室:原始现象作为新物理学的探针
- 批准号:
2317018 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Advancing Mosquito-borne Disease Models with Distributed Delay Equations
博士后奖学金:MPS-Ascend:利用分布式延迟方程推进蚊媒疾病模型
- 批准号:
2316455 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Vortex-beam Spectroscopy of Type-II Superconductors in the THz Regime
博士后奖学金:MPS-Ascend:太赫兹体系中 II 型超导体的涡旋光束光谱
- 批准号:
2316535 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Coherent Control of Nonlinear Schrodinger Dynamics in the Presence of Uncertainty
博士后奖学金:MPS-Ascend:不确定性情况下非线性薛定谔动力学的相干控制
- 批准号:
2316622 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Jet-Energy Loss Measurements with the sPHENIX Detector
博士后奖学金:MPS-Ascend:使用 sPHENIX 探测器进行射流能量损失测量
- 批准号:
2316651 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: The Ghost Algebra for Correlation Functions & Convexity of Anosov Representations
博士后奖学金:MPS-Ascend:相关函数的幽灵代数
- 批准号:
2316685 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award