MPS-Ascend: Ergodic Schrödinger Operators and Quasicrystals
MPS-Ascend:遍历薛定谔算子和准晶体
基本信息
- 批准号:2213277
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). PI Takase is awarded a National Science Foundation Mathematical and Physical Sciences Ascending Postdoctoral Research Fellowship (NSF MPS-Ascend) to conduct a program of research and activities related to broaden participation by groups underrepresented in STEM. This fellowship to Dr. Takase supports the research project entitled "MPS-Ascend: Ergodic Schrödinger Operators and Quasicrystals", under the mentorship of two sponsoring scientists. At the first host institution, Michigan State University, Dr. Takase will work with the sponsoring scientist Dr. Ilya Kachkovskiy, from August 2022 through July 2023. Dr. David Damanik will be Dr. Takase’s sponsoring scientist at Rice University from August 2023 through July 2025. The goal of this project is to investigate the spectral theory of ergodic Schrödinger operators, with a focus on explicit multi-dimensional operators that appear in quantum mechanics to model physical phenomena. The PI plans to study Laplacians on Penrose tilings to describe the topological structure of the spectrum, continuity of spectral characteristics of Schrödinger operators as the coupling constant approaches zero, and ergodic Schrödinger operators with separable potentials. The PI plans to engage with undergraduate research mentorship and professional development activities through directed reading programs. To broaden participation in mathematical and physical sciences, Dr. Takase brings insights from his own experience as a Mellon Mays Undergraduate Fellow and his engagement with middle school outreach as a graduate student member of a community educational outreach program called Math CEO. He has participated in several outreach activities at HSIs and HBCUs and plans to continue these initiatives in future.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。PI Takase被授予美国国家科学基金会数学和物理科学上升博士后研究奖学金(NSF MPS-Ascend),以开展与扩大STEM代表性不足的群体参与有关的研究和活动计划。高濑博士的奖学金在两位赞助科学家的指导下支持题为“MPS-Ascend:遍历薛定谔算子和准晶体”的研究项目。在第一个主办机构密歇根州立大学,高濑博士将与赞助科学家伊利亚·卡奇科夫斯基博士合作,从2022年8月到2023年7月。大卫Damanik博士将从2023年8月到2025年7月在莱斯大学担任Takase博士的赞助科学家。该项目的目标是研究遍历薛定谔算子的谱理论,重点是量子力学中出现的显式多维算子来模拟物理现象。PI计划研究彭罗斯平铺上的拉普拉斯算子,以描述谱的拓扑结构,薛定谔算子在耦合常数接近零时的谱特征的连续性,以及具有可分离势的遍历薛定谔算子。PI计划通过定向阅读计划参与本科生研究导师和专业发展活动。为了扩大数学和物理科学的参与,高濑博士带来了他自己作为梅隆梅斯大学本科研究员的经验,以及他作为社区教育推广计划的研究生成员参与中学推广活动的见解。他参加了几个外展活动在HSIs和HBCUs和计划继续在未来这些举措。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alberto Takase其他文献
On the Spectra of Separable 2D Almost Mathieu Operators
- DOI:
10.1007/s00023-021-01080-x - 发表时间:
2020-12 - 期刊:
- 影响因子:0
- 作者:
Alberto Takase - 通讯作者:
Alberto Takase
Spectral estimates of dynamically-defined and amenable operator families
动态定义且适用的算子族的频谱估计
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Siegfried Beckus;Alberto Takase - 通讯作者:
Alberto Takase
Alberto Takase的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
- 批准号:
2402099 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Quantifying Accelerated Reaction Kinetics in Microdroplets with pH-Jump and Mass Spectrometry: From Small Molecules to Proteins and Beyond
博士后奖学金:MPS-Ascend:利用 pH 跳跃和质谱定量微滴中的加速反应动力学:从小分子到蛋白质及其他
- 批准号:
2316167 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Understanding Fukaya categories through Homological Mirror Symmetry
博士后奖学金:MPS-Ascend:通过同调镜像对称理解深谷范畴
- 批准号:
2316538 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
- 批准号:
2316666 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: The Early Universe Laboratory: Primordial Phenomena as Probes of New Physics
博士后奖学金:MPS-Ascend:早期宇宙实验室:原始现象作为新物理学的探针
- 批准号:
2317018 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Advancing Mosquito-borne Disease Models with Distributed Delay Equations
博士后奖学金:MPS-Ascend:利用分布式延迟方程推进蚊媒疾病模型
- 批准号:
2316455 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Vortex-beam Spectroscopy of Type-II Superconductors in the THz Regime
博士后奖学金:MPS-Ascend:太赫兹体系中 II 型超导体的涡旋光束光谱
- 批准号:
2316535 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Coherent Control of Nonlinear Schrodinger Dynamics in the Presence of Uncertainty
博士后奖学金:MPS-Ascend:不确定性情况下非线性薛定谔动力学的相干控制
- 批准号:
2316622 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: Jet-Energy Loss Measurements with the sPHENIX Detector
博士后奖学金:MPS-Ascend:使用 sPHENIX 探测器进行射流能量损失测量
- 批准号:
2316651 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: MPS-Ascend: The Ghost Algebra for Correlation Functions & Convexity of Anosov Representations
博士后奖学金:MPS-Ascend:相关函数的幽灵代数
- 批准号:
2316685 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Fellowship Award