Collaborative Research: CCRI: New: reVISit: Scalable Empirical Evaluation of Interactive Visualizations
合作研究:CCRI:新:reVISit:交互式可视化的可扩展实证评估
基本信息
- 批准号:2213757
- 负责人:
- 金额:$ 74.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project furthers progress in our understanding of data visualization by developing infrastructure to allow researchers to conduct feature-rich online experiments. Data visualizations are crucial in data driven discovery in fields as diverse as medicine, biology, or intelligence. Visualization is also often used in communication, for example by newspapers or government agencies. However, it is difficult to know which visualization techniques are better for particular datasets and tasks. Can certain visualization techniques enable people to make judgements more efficiently, or more correctly? Does a particular technique lead to more insights, or to more diverse types of insights than others? Is one technique more enjoyable to use, or more versatile? Is one technique easier to learn than another one? Is a technique better after developing familiarity? These are the kinds of questions that the visualization community needs to answer to develop a rigorous understanding of data visualization. Having answers to these questions will allow us to make better visualization design choices, develop better recommendations for visualizations, and allow us to tailor visualizations to audiences and situations. This project will develop testing infrastructure, so that scientists can ask these questions efficiently in large scale web-based experiments, with diverse participants that reflect the intended audience of visualizations. The team will develop the reVISit Infrastructure, a suite of modular but compatible tools to design and debug online studies of interactive visualization techniques, to efficiently design training material for the study, to elicit free-form, spoken responses from participants, and to provide advanced tools for analyzing such data. The proposed reVISit infrastructure development addresses a critical bottleneck in visualization research: how can we better and more efficiently empirically evaluate visualization techniques? The reVISit infrastructure aims to democratize evaluation of interactive visualization techniques, an area that has been under-explored, due in part to the high technical burden and skills required to create complex online experiments. The key innovations of this project are: (1) Software infrastructure for flexible study creation and instrumented data collection, including interaction provenance, insights, and rationales, compatible with online crowdsourced study contexts. (2) Software infrastructure to wrangle the results data into formats compatible with off-the-shelf analysis tools, and advanced software infrastructure to analyze these diverse data streams that can be used for piloting, quality control, and analyzing usage types, insights, rational, and performance. These methods will allow visualization researchers to gather empirical evidence about the merits of different interactive visualization techniques. It will allow researchers to understand the types of insights that different techniques support, revealing diverging analysis strategies users may take. Ultimately, these methods will enable a wider set of visualization researchers to run a much broader range of experiments using crowdsourcing than before.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目通过开发基础设施,使研究人员能够进行功能丰富的在线实验,进一步推动了我们对数据可视化的理解。数据可视化在医学、生物学或智能等领域的数据驱动发现中至关重要。可视化也经常用于通信,例如报纸或政府机构。然而,很难知道哪些可视化技术更适合特定的数据集和任务。某些可视化技术能使人们更有效地或更正确地做出判断吗?一种特定的技术是否会带来更多的洞察力,或者比其他技术更多样化的洞察力?是一种技术更令人愉快的使用,或更多才多艺?一种技术比另一种更容易学习吗?熟悉之后的技术是否更好?这些都是可视化社区需要回答的问题,以形成对数据可视化的严格理解。这些问题的答案将使我们能够做出更好的可视化设计选择,为可视化提供更好的建议,并使我们能够根据受众和情况定制可视化。该项目将开发测试基础设施,以便科学家可以在大规模基于网络的实验中有效地提出这些问题,并与不同的参与者一起反映可视化的目标受众。该团队将开发reVISit基础设施,这是一套模块化但兼容的工具,用于设计和调试交互式可视化技术的在线研究,有效地设计研究的培训材料,从参与者那里获得自由形式的口头回应,并提供用于分析此类数据的高级工具。拟议的reVISit基础设施开发解决了可视化研究中的一个关键瓶颈:我们如何更好地,更有效地经验评估可视化技术?reVISit基础设施旨在使交互式可视化技术的评估民主化,这是一个尚未充分探索的领域,部分原因是创建复杂的在线实验所需的高技术负担和技能。该项目的主要创新是:(1)用于灵活研究创建和仪表化数据收集的软件基础设施,包括与在线众包研究环境兼容的交互出处,见解和原理。(2)软件基础设施将结果数据转换为与现成分析工具兼容的格式,先进的软件基础设施分析这些不同的数据流,可用于试点,质量控制和分析使用类型,见解,合理性和性能。这些方法将允许可视化研究人员收集不同的交互式可视化技术的优点的经验证据。它将使研究人员了解不同技术支持的见解类型,揭示用户可能采取的不同分析策略。最终,这些方法将使更广泛的可视化研究人员能够使用众包进行比以前更广泛的实验。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lane Harrison其他文献
Memorability of Enhanced Informational Graphics
增强信息图形的记忆力
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Alyssa M. Pena;E. Ragan;Lane Harrison - 通讯作者:
Lane Harrison
Improving Image Accessibility by Combining Haptic and Auditory Feedback
通过结合触觉和听觉反馈来提高图像的可访问性
- DOI:
10.1145/3517428.3550362 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Mallak Alkhathlan;M. L. Tlachac;Lane Harrison;Elke A. Rundensteiner - 通讯作者:
Elke A. Rundensteiner
Effectiveness of Feature-Driven Storytelling in 3D Time-Varying Data Visualization
3D 时变数据可视化中特征驱动叙事的有效性
- DOI:
10.2352/issn.2470-1173.2017.1.vda-393 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Li Yu;Lane Harrison;Aidong Lu - 通讯作者:
Aidong Lu
Increasing Enthusiasm and Enhancing Learning for Biochemistry-Laboratory Safety with an Augmented-Reality Program
通过增强现实程序提高生物化学实验室安全的热情并加强学习
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3
- 作者:
Bolin Zhu;Mi Feng;H. Lowe;Jeff Kesselman;Lane Harrison;R. Dempski - 通讯作者:
R. Dempski
MEV: Visual Analytics for Medication Error Detection
MEV:用于药物错误检测的可视化分析
- DOI:
10.5220/0007366200720082 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
T. Kakar;X. Qin;Cory M. Tapply;O. Spring;D. Murphy;D. Yun;Elke A. Rundensteiner;Lane Harrison;T. La;S. Sahoo;S. De - 通讯作者:
S. De
Lane Harrison的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lane Harrison', 18)}}的其他基金
CHS: Small: Collaborative Research: Validating and Communicating Model-Based Approaches for Data Visualization Ability Assessment
CHS:小型:协作研究:验证和交流基于模型的数据可视化能力评估方法
- 批准号:
1815587 - 财政年份:2018
- 资助金额:
$ 74.73万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
- 批准号:
2318703 - 财政年份:2023
- 资助金额:
$ 74.73万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2347617 - 财政年份:2023
- 资助金额:
$ 74.73万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: NEW: Building a Batteryless Computing Community through Access to Education, Testbeds, and Tools
合作研究:CCRI:新:通过获得教育、测试平台和工具构建无电池计算社区
- 批准号:
2235002 - 财政年份:2023
- 资助金额:
$ 74.73万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
- 批准号:
2235160 - 财政年份:2023
- 资助金额:
$ 74.73万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: Syntactic Differencing Infrastructure for Software Evolution Research
合作研究:CCRI:新:软件进化研究的句法差异基础设施
- 批准号:
2232594 - 财政年份:2023
- 资助金额:
$ 74.73万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: CoMIC: A Collaborative Mobile Immersive Computing Research Infrastructure for Multi-user XR
协作研究:CCRI:新:CoMIC:用于多用户 XR 的协作移动沉浸式计算研究基础设施
- 批准号:
2235050 - 财政年份:2023
- 资助金额:
$ 74.73万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: CCRI: New: Distributed Space and Terrestrial Networking Infrastructure for Multi-Constellation Coexistence
合作研究:研究基础设施:CCRI:新:用于多星座共存的分布式空间和地面网络基础设施
- 批准号:
2235140 - 财政年份:2023
- 资助金额:
$ 74.73万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: Grand: Quori 2.0: Uniting, Broadening, and Sustaining a Research Community Around a Modular Social Robot Platform
协作研究:CCRI:盛大:Quori 2.0:围绕模块化社交机器人平台联合、扩大和维持研究社区
- 批准号:
2235042 - 财政年份:2023
- 资助金额:
$ 74.73万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: Planning-C: A Community for Configurability Open Research and Development (ACCORD)
合作研究:CCRI:Planning-C:可配置性开放研究与开发社区 (ACCORD)
- 批准号:
2234909 - 财政年份:2023
- 资助金额:
$ 74.73万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation
合作研究:CCRI:新:研究新闻推荐基础设施与实时用户进行算法和界面实验
- 批准号:
2232554 - 财政年份:2023
- 资助金额:
$ 74.73万 - 项目类别:
Standard Grant