Direct Thermoacoustic Cooling of Cryogenic Hydrogen
低温氢气的直接热声冷却
基本信息
- 批准号:2214235
- 负责人:
- 金额:$ 39.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To address climate change, Humanity must reduce reliance on fossil fuels and find alternative ways to generate energy for industry, transportation, and consumers. Hydrogen, when produced using renewable energy sources, is considered as one of the most promising fuels for the future, and does not emit harmful pollutants when reacting with oxygen. However, being the lightest element, hydrogen in the gaseous form requires large containers for storage and is considered impractical for many applications. Liquid hydrogen is a very attractive compact energy source, but it can exist only at very low temperatures. Current cooling techniques for both liquefaction and storage of hydrogen are rather inefficient. To help make the hydrogen economy viable, a potentially efficient novel acoustic method for coupled cooling-conversion of cryogenic hydrogen is explored of this project. The accompanying educational and outreach activities aim at improving engineering education by developing materials for energy-related courses, summer programs for K-12 students, professional short courses, and a textbook on cryogenic hydrogen systems.The necessary steps to prepare hydrogen for liquefaction and subsequent storage in the low energy state include cryogenic cooling and spin-conversion. These processes can be potentially combined by employing thermoacoustic heat pumping in a porous matrix which will also serve as a catalytic bed, accelerating conversion of flowing orthohydrogen into parahydrogen. The exploration of this combined process and associated thermal transport, fluid flow, quantum transitions, dynamic regimes, and system engineering constitutes the intellectual significance of the proposed research. Modeling efforts will include development of a reduced-order framework for analysis of thermoacoustic-catalytic systems for cooling cryogenic hydrogen and setting up high-fidelity computational simulations, while incorporating models from different scientific and technical areas. Experimental systems will be designed, built, and tested for analysis validation and practical demonstrations of novel methods for cooling cryogenic hydrogen. Results and products generated in this project will help establish methods for practical design of efficient cryogenic hydrogen-based energy systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了应对气候变化,人类必须减少对化石燃料的依赖,并找到替代方法为工业,运输和消费者提供能源。氢,当使用可再生能源生产时,被认为是未来最有前途的燃料之一,并且在与氧气反应时不会排放有害污染物。然而,作为最轻的元素,气态形式的氢需要大的容器来储存,并且被认为对于许多应用是不切实际的。液氢是一种非常有吸引力的紧凑能源,但它只能在非常低的温度下存在。目前用于氢的液化和储存的冷却技术都相当低效。为了使氢经济可行,本项目探索了一种潜在有效的用于低温氢的耦合冷却-转化的新型声学方法。伴随的教育和推广活动旨在通过开发与能源相关的课程材料、K-12学生的暑期课程、专业短期课程和低温氢系统教科书来改善工程教育。准备氢液化和随后在低能状态下储存的必要步骤包括低温冷却和自旋转换。这些过程可以通过在多孔基质中采用热声热泵来潜在地组合,所述多孔基质也将用作催化床,加速流动的正氢到仲氢的转化。这种结合的过程和相关的热传输,流体流动,量子跃迁,动力学制度和系统工程的探索构成了所提出的研究的智力意义。建模工作将包括开发一个降阶框架,用于分析用于冷却低温氢的热声催化系统,并建立高保真度计算模拟,同时纳入来自不同科学和技术领域的模型。将设计、建造和测试实验系统,以分析验证和实际演示冷却低温氢的新方法。该项目产生的成果和产品将有助于建立有效的低温氢基能源系统的实用设计方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantin Matveev其他文献
Electrical and Thermal Transport in Inhomogeneous Luttinger Liquids.
非均匀鲁廷格液体中的电和热传输。
- DOI:
10.1103/physrevlett.114.236405 - 发表时间:
2014 - 期刊:
- 影响因子:8.6
- 作者:
Wade DeGottardi;Konstantin Matveev - 通讯作者:
Konstantin Matveev
Conductance of a quantum wire in the Wigner-crystal regime.
维格纳晶体体系中量子线的电导。
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:8.6
- 作者:
Konstantin Matveev - 通讯作者:
Konstantin Matveev
Hall–Littlewood RSK field
霍尔-利特尔伍德 RSK 球场
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Alexey Bufetov;Konstantin Matveev - 通讯作者:
Konstantin Matveev
Macdonald-positive specializations of the algebra of symmetric functions: Proof of the Kerov conjecture
对称函数代数的麦克唐纳正特化:Kerov 猜想的证明
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:4.9
- 作者:
Konstantin Matveev - 通讯作者:
Konstantin Matveev
q-deformed Interacting Particle Systems, RSKs and Random Polymers
- DOI:
- 发表时间:
2016-04 - 期刊:
- 影响因子:0
- 作者:
Konstantin Matveev - 通讯作者:
Konstantin Matveev
Konstantin Matveev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantin Matveev', 18)}}的其他基金
Enhancement of Air Cavities for Ship Drag Reduction
增强气腔以减少船舶阻力
- 批准号:
1800135 - 财政年份:2018
- 资助金额:
$ 39.68万 - 项目类别:
Standard Grant
Dynamics of Novel Air-Assisted Marine Vehicles
新型空气辅助船舶动力学
- 批准号:
1026264 - 财政年份:2010
- 资助金额:
$ 39.68万 - 项目类别:
Continuing Grant
Thermoacoustic Phenomena in Small-Scale Systems
小规模系统中的热声现象
- 批准号:
0853171 - 财政年份:2009
- 资助金额:
$ 39.68万 - 项目类别:
Standard Grant
Electronic Properties of Nanostructures
纳米结构的电子特性
- 批准号:
9974435 - 财政年份:1999
- 资助金额:
$ 39.68万 - 项目类别:
Continuing Grant
相似海外基金
Basic Study of Thermoacoustic Electric Power Generation -Development of Heat, Sound, and Electric Energy Transducer
热声发电基础研究-热、声、电能换能器的开发
- 批准号:
23K03730 - 财政年份:2023
- 资助金额:
$ 39.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thermoacoustic Instabilities in Supercritical Combustion
超临界燃烧中的热声不稳定性
- 批准号:
534571-2019 - 财政年份:2022
- 资助金额:
$ 39.68万 - 项目类别:
Postgraduate Scholarships - Doctoral
Controlling Transcritical Thermoacoustic Interactions for Space Propulsion and Novel Energy Systems
控制空间推进和新型能源系统的跨临界热声相互作用
- 批准号:
RGPIN-2016-04143 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
Discovery Grants Program - Individual
I-Corps: Large-Scale, Waste Heat Recovery Solution Based on Thermoacoustic Energy Conversion
I-Corps:基于热声能量转换的大规模废热回收解决方案
- 批准号:
2054022 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
Standard Grant
An investigation of bi-directional flame-acoustic interactions during thermoacoustic instabilities
热声不稳定性期间双向火焰声相互作用的研究
- 批准号:
2053671 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
Standard Grant
RII Track-4: Exploiting Thermoacoustic Assonance to Enrich Multifunctional Meta-Structures
RII Track-4:利用热声共鸣来丰富多功能元结构
- 批准号:
2033399 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
Standard Grant
Thermoacoustic Instabilities in Supercritical Combustion
超临界燃烧中的热声不稳定性
- 批准号:
534571-2019 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
Postgraduate Scholarships - Doctoral
Development of efficient carbon dioxide capture with acoustic waves by a thermoacoustic engine
通过热声发动机开发声波高效捕获二氧化碳
- 批准号:
21K03874 - 财政年份:2021
- 资助金额:
$ 39.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Thermoacoustic Instabilities in Supercritical Combustion
超临界燃烧中的热声不稳定性
- 批准号:
534571-2019 - 财政年份:2020
- 资助金额:
$ 39.68万 - 项目类别:
Postgraduate Scholarships - Doctoral
CMMI-EPSRC: Thermoacoustic Response of Additively Manufactured Metals: A Multi-Scale Study from Grain to Component Scales
CMMI-EPSRC:增材制造金属的热声响应:从晶粒到部件尺度的多尺度研究
- 批准号:
2027082 - 财政年份:2020
- 资助金额:
$ 39.68万 - 项目类别:
Standard Grant