Collaborative Research: Advancing Bayesian Thinking in STEM
合作研究:推进 STEM 中的贝叶斯思维
基本信息
- 批准号:2215879
- 负责人:
- 金额:$ 13.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to serve the national interest by improving statistics instruction through a focus on increasing access to Bayesian methods. Dealing with the complexity of uncertainty is an important part of the scientific process. Like scientists, STEM students need to derive rigorous conclusions from data in their science practice. This project is based upon the premise that wider inclusion of Bayesian methods in STEM curricula can help students understand scientific uncertainty. To support the wider use of these methods, the project plans to build a community of STEM educators who can transform their courses by introducing new instructional materials for Bayesian methods. The project team intends to develop and offer a professional development program for STEM instructors from other institutions that focuses on the use and teaching of Bayesian methods. In addition, teams of instructors will be mentored by the project team in the development of instructional materials. The project will disseminate the instructional materials and project results to the science education community through social media, journal publications, and conference presentations. This goal of this project is to make Bayesian methods as accessible as possible at the undergraduate level through a cross-disciplinary curricular instructor capacity-building program for different STEM fields. Through recruitment of a diverse body of STEM instructors, the project will: 1) Increase the number of undergraduate students who understand Bayesian methods; 2) Enhance the capacity of STEM instructors in Bayesian methods through training and community building; 3) Develop and enrich teaching and learning materials that showcase the use of Bayesian methods in STEM fields. To achieve these objectives, the three collaborating institutions, University of California Irvine, Vassar College, and Duke University, will offer a week-long instructor summer training boot camp. By the end of the boot camp, it is expected that instructor participants will be comfortable using Bayesian methods in answering scientific questions, using appropriate software for teaching Bayesian methods, and designing classroom activities and assessments that support the learning of Bayesian methods. Selected instructors from the boot camp will be mentored by the project team in the development of Bayesian teaching and learning materials, specifically using scientific data from their fields. Using surveys and learning assessments, the project will assess the effectiveness of the summer boot camp. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools. This project is also supported by the NSF IUSE:HSI program, which has the goals of enhancing the quality of undergraduate STEM education, and increasing the recruitment, retention, and graduation rates of students pursuing associate’s or baccalaureate degrees in STEM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过重点增加贝叶斯方法的使用来改善统计教学,从而为国家利益服务。处理不确定性的复杂性是科学过程的重要组成部分。像科学家一样,STEM学生需要从科学实践中的数据中得出严格的结论。该项目的前提是,在STEM课程中更广泛地纳入贝叶斯方法可以帮助学生理解科学的不确定性。为了支持更广泛地使用这些方法,该项目计划建立一个STEM教育工作者社区,他们可以通过引入贝叶斯方法的新教学材料来改变他们的课程。项目团队打算为来自其他机构的STEM教师开发和提供专业发展计划,重点是贝叶斯方法的使用和教学。此外,项目小组将指导教员小组编写教学材料。该项目将通过社交媒体、期刊出版物和会议演示向科学教育界传播教学材料和项目成果。该项目的目标是通过针对不同STEM领域的跨学科课程教师能力建设计划,使贝叶斯方法在本科阶段尽可能容易获得。通过招聘多元化的STEM讲师,该项目将:1)增加了解贝叶斯方法的本科生人数; 2)通过培训和社区建设提高STEM讲师在贝叶斯方法方面的能力; 3)开发和丰富教学材料,展示贝叶斯方法在STEM领域的使用。为了实现这些目标,三个合作机构,加州尔湾大学,瓦萨学院和杜克大学,将提供为期一周的教练夏季训练靴子营。在靴子训练营结束时,预计教员参与者将能够熟练地使用贝叶斯方法回答科学问题,使用适当的软件教授贝叶斯方法,并设计支持贝叶斯方法学习的课堂活动和评估。从靴子训练营选出的教员将由项目小组指导贝叶斯教学材料的开发,特别是使用其领域的科学数据。该项目将利用调查和学习评估来评估夏季靴子训练营的效果。NSF IUSE:EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。通过学生的学习轨道,该计划支持创建,探索和实施有前途的做法和工具。该项目还得到了NSF IUSE:HSI项目的支持,该项目的目标是提高本科STEM教育的质量,并提高攻读STEM副学士或学士学位学生的录取率、保留率和毕业率。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mine Dogucu其他文献
Making Sense of Uncertainty in the Science Classroom
- DOI:
10.1007/s11191-022-00341-3 - 发表时间:
2022-06-14 - 期刊:
- 影响因子:2.500
- 作者:
Joshua M. Rosenberg;Marcus Kubsch;Eric-Jan Wagenmakers;Mine Dogucu - 通讯作者:
Mine Dogucu
Mine Dogucu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414607 - 财政年份:2024
- 资助金额:
$ 13.68万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 13.68万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
$ 13.68万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414606 - 财政年份:2024
- 资助金额:
$ 13.68万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 13.68万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414608 - 财政年份:2024
- 资助金额:
$ 13.68万 - 项目类别:
Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414605 - 财政年份:2024
- 资助金额:
$ 13.68万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
$ 13.68万 - 项目类别:
Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:
2414604 - 财政年份:2024
- 资助金额:
$ 13.68万 - 项目类别:
Continuing Grant
Collaborative Research: Advancing Collaborations for Equity in Marine and Climate Sciences
合作研究:推进海洋和气候科学公平合作
- 批准号:
2314916 - 财政年份:2023
- 资助金额:
$ 13.68万 - 项目类别:
Standard Grant