PRISMA: Efficient Algorithms and Methods for Online Extraction of Performance Models in Virtualized Environments

PRISMA:虚拟化环境中在线提取性能模型的高效算法和方法

基本信息

项目摘要

Modern software systems are becoming increasingly complex and dynamic. Systems typically have a layered architecture which includes application components, middleware platform(s), virtual machine(s), hypervisor, and physical hardware. Each layer influences the system performance, however, it is a major challenge to separate, isolate and quantify the performance influences of each layer while explicitly taking into account configuration and deployment parameters which can change dynamically during operation. Over the past five years, layered architecture-level performance models have become increasingly popular as a powerful tool for run-time performance management, however, such models are usually costly to build manually and require extensive experimental analysis in a controlled environment. The aim of the PRISMA project is to develop novel methods for automatic extraction of architecture-level performance models of virtualization platforms and their hosted applications during system operation. The project will provide a novel reference architecture for virtualization platforms and virtual appliances with integrated model extraction capabilities. The extraction will be based solely on generic model skeletons (composable model building-blocks) integrated into the platforms at the virtualization and middleware level, and monitoring data collected at system run-time, without assuming availability of source code or possibility to conduct static code analysis. The extracted performance models will capture the performance-relevant aspects of the hosted applications and their execution environment including the virtualization platform itself. Thus, extensive and costly experimental analysis to build performance models for capacity management will no longer be necessary. The developed methods will facilitate the creation of performance models and will lay the foundation for proactive performance and resource management by means of the models. By automating and integrating online model extraction, refinement and maintenance as features provided by the virtualization platform, PRISMA will set the basis for a breakthrough in the practical use of predictive models in real-life systems. The adoption of model-based run-time management techniques promises to significantly improve the efficiency of modern virtualized service infrastructures by avoiding to over-provision system resources without having to sacrifice application performance guarantees.
现代软件系统正变得越来越复杂和动态。系统通常具有分层架构,其包括应用组件、中间件平台、虚拟机、管理程序和物理硬件。每一层都影响系统性能,然而,在明确考虑在操作期间可能动态变化的配置和部署参数的同时,分离、隔离和量化每一层的性能影响是一个主要挑战。在过去的五年中,分层的体系结构级的性能模型已经成为运行时性能管理的一个强大的工具越来越受欢迎,然而,这样的模型通常是昂贵的手动构建,并需要在受控环境中进行大量的实验分析。PRISMA项目的目的是开发新的方法,用于在系统运行期间自动提取虚拟化平台及其托管应用程序的架构级性能模型。该项目将为虚拟化平台和具有集成模型提取功能的虚拟设备提供一种新颖的参考架构。提取将仅基于在虚拟化和中间件级别集成到平台中的通用模型框架(可组合模型构建块),并监控在系统运行时收集的数据,而不假设源代码的可用性或进行静态代码分析的可能性。提取的性能模型将捕获托管应用程序及其执行环境(包括虚拟化平台本身)的性能相关方面。因此,将不再需要为容量管理建立性能模型而进行广泛和昂贵的实验分析。所开发的方法将有助于创建性能模型,并将奠定基础,积极主动的性能和资源管理的模型。通过自动化和集成在线模型提取、细化和维护作为虚拟化平台提供的功能,PRISMA将为在现实系统中实际使用预测模型奠定基础。采用基于模型的运行时管理技术,通过避免过度配置系统资源而不必牺牲应用程序性能保证,有望显着提高现代虚拟化服务基础设施的效率。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling of Parametric Dependencies for Performance Prediction of Component-Based Software Systems at Run-Time
基于组件的软件系统运行时性能预测的参数依赖性建模
Online Learning of Run-Time Models for Performance and Resource Management in Data Centers
数据中心性能和资源管理运行时模型的在线学习
  • DOI:
    10.1007/978-3-319-47474-8_17
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jürgen Walter;Antinisca Di Marco;Simon Spinner;Paola Inverardi;Samuel Kounev
  • 通讯作者:
    Samuel Kounev
Online model learning for self-aware computing infrastructures
自我意识计算基础设施的在线模型学习
  • DOI:
    10.1016/j.jss.2018.09.089
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Spinner;Johannes Grohmann;Simon Eismann;Samuel Kounev
  • 通讯作者:
    Samuel Kounev
Detecting Parametric Dependencies for Performance Models Using Feature Selection Techniques
使用特征选择技术检测性能模型的参数依赖性
Self-Tuning Resource Demand Estimation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Samuel Kounev其他文献

Professor Dr.-Ing. Samuel Kounev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Samuel Kounev', 18)}}的其他基金

MODELS: performance MODELing of Software-defined data center networks
模型:软件定义数据中心网络的性能建模
  • 批准号:
    317105593
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
EvIDencE: Testing Intrusion Detection Systems in Virtualized Environments
证据:在虚拟化环境中测试入侵检测系统
  • 批准号:
    289129390
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Autonomes Performanz- und Ressourcen-Management in dynamischen, dienstorientierten Umgebungen
动态、面向服务的环境中的自主性能和资源管理
  • 批准号:
    113520543
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Modellierung und Bewertung von Event-basierten Systemen
基于事件的系统的建模和评估
  • 批准号:
    20128456
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: A Theoretical Exploration of Efficient and Accurate Clustering Algorithms
职业生涯:高效准确聚类算法的理论探索
  • 批准号:
    2337832
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
  • 批准号:
    2425308
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ATD: Efficient and Effective Algorithms for Detection of Anomalies in High-dimensional Spatiotemporal Data with Large Amounts of Missing Data
ATD:高效且有效的高维时空数据异常检测算法
  • 批准号:
    2318925
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
  • 批准号:
    2327013
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
  • 批准号:
    2239046
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CRII: CIF: Sequential Decision-Making Algorithms for Efficient Subset Selection in Multi-Armed Bandits and Optimization of Black-Box Functions
CRII:CIF:多臂老虎机中高效子集选择和黑盒函数优化的顺序决策算法
  • 批准号:
    2246187
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
  • 批准号:
    2315725
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Graph Mining and Network Science with Differential Privacy: Efficient Algorithms and Fundamental Limits
协作研究:SaTC:核心:媒介:具有差异隐私的图挖掘和网络科学:高效算法和基本限制
  • 批准号:
    2317192
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了