MRI: Acquisition of the Kentucky Research Informatics Composable Cloud (KyRICC)

MRI:收购肯塔基州研究信息学可组合云 (KyRICC)

基本信息

  • 批准号:
    2216140
  • 负责人:
  • 金额:
    $ 113.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Scientific discovery today is driven by computation and data-intensive research that exploits the growing amounts of available data. However, the wide variety and size of emerging datasets often make analysis challenging on current high-performance computing (HPC) infrastructures because system configurations cannot be customized to process the data efficiently. This project will acquire and deploy a dynamically composable computer infrastructure called the Kentucky Research Informatics Composable Cloud (KyRICC). This KyRICC architecture will support complex data analysis pipelines with highly heterogeneous hardware requirements not currently supported by current HPC infrastructures. As a result, this project will enable and support a wide range of new research activities. KyRICC will be used by hundreds of University of Kentucky (UK) researchers (faculty, staff, and students) and by other computational research collaborators at institutions across the region including Centre College, Morehead State University, Eastern Kentucky University, University of Louisville, Northern Kentucky University, and Kentucky State University. As a leading-edge system, KyRICC and the exciting projects it makes possible will help recruit students, including students from groups underrepresented in STEM, to computational research. The system will also enhance the research training of many undergraduates, graduate students, and postdocs in Kentucky colleges and universities.The KyRICC architecture will support complex data analysis pipelines with highly heterogeneous hardware requirements across individual data analysis steps. Specifically, KyRICC will integrate four subsystems that will enable dynamically composable cloud infrastructure: (1) A cluster of peripheral-composable compute nodes, allowing for up to 10’s of GPUs and 10’s of TB of main memory on a single node. Groups of nodes can be dynamically allocated to allow the training and inference of very large deep learning models and datasets; (2) A next-generation high-speed NVMe-based storage cluster capable of efficiently serving large volumes of data to multi-GPU nodes. Unlike traditional clustered storage systems, this composable filesystem allows the partitioning of storage on the project-level, allowing us to isolate data and better manage system performance; (3) A Peta-scale storage system provided by UK’s current research storage infrastructure, providing a total of 2.2 PB of storage; and (4) An innovative workload management system for dynamic infrastructure composition, workload profiling, model and infrastructure tuning, supporting common pipelines and machine and deep learning models through templated projects. KyRICC will be a regional computational resource and will also be made available to the broader national computational research infrastructure through the NSF-supported ACCESS projects. Areas of expected breakthroughs in KyRICC-enabled research include deep learning and computer vision; natural language processing and multimodal embedding; computational modeling and simulation with data analytics; and omics analysis and systemic integration.This project is jointly funded by the Major Research Instrumentation (MRI) program, the Established Program to Stimulate Competitive Research (EPSCoR), and the Computer & Information Science & Engineering (CISE) Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天的科学发现是由计算和数据密集型研究推动的,这些研究利用了越来越多的可用数据。然而,新出现的数据集种类繁多且规模庞大,这往往使分析在当前的高性能计算(HPC)基础设施上具有挑战性,因为无法定制系统配置来高效地处理数据。该项目将获得并部署一个动态可组合的计算机基础设施,称为肯塔基研究信息学可组合云(KyRICC)。这种KyRICC架构将支持具有高度异构性硬件要求的复杂数据分析管道,目前的HPC基础设施不支持这种要求。因此,该项目将支持和支持一系列新的研究活动。KyRICC将由数百名肯塔基大学(英国)的研究人员(教职员工和学生)以及该地区各机构的其他计算研究合作者使用,包括中心学院、莫尔黑德州立大学、东肯塔基大学、路易斯维尔大学、北肯塔基大学和肯塔基州立大学。作为一种前沿系统,KyRICC及其实现的激动人心的项目将有助于招收学生,包括来自STEM中代表性不足的群体的学生,从事计算研究。该系统还将加强肯塔基州许多本科生、研究生和博士后的研究培训。KyRICC架构将支持跨单个数据分析步骤具有高度异构性硬件要求的复杂数据分析管道。具体地说,KyRICC将集成四个子系统,以支持动态组合的云基础设施:(1)外围设备可组合的计算节点集群,允许在单个节点上支持高达10‘S的GPU和10’TB的S主存。可以动态分配节点组,以允许对超大型深度学习模型和数据集进行训练和推理;(2)基于NVMe的下一代高速存储集群,能够高效地向多个GPU节点提供海量数据。与传统的集群存储系统不同,这种可组合的文件系统允许在项目级别对存储进行分区,使我们能够隔离数据并更好地管理系统性能;(3)由英国当前研究的存储基础架构提供的Peta规模的存储系统,提供总计2.2 PB的存储;以及(4)用于动态基础架构组合、工作负载分析、模型和基础架构调优的创新工作负载管理系统,通过模板化项目支持通用管道和机器和深度学习模型。KyRICC将是一个地区性的计算资源,也将通过NSF支持的ACCESS项目提供给更广泛的国家计算研究基础设施。KYRICC支持的研究的预期突破领域包括深度学习和计算机视觉;自然语言处理和多模式嵌入;数据分析的计算建模和模拟;组学分析和系统集成。该项目由重大研究工具(MRI)计划、既定的激励竞争研究计划(EPSCoR)和计算机与信息科学与工程(CESE)理事会联合资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffery Talbert其他文献

Mo1780 - The Impact of Chronic Opioid use on IBD Healthcare Utilization
  • DOI:
    10.1016/s0016-5085(18)32744-6
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lamprinos Michailidis;Bill Hacker;Nathan O. Pauly;Juequan Nie;Selina Mullins;Jeffery Talbert;Deborah Flomenhoft;Terrence Barrett
  • 通讯作者:
    Terrence Barrett
W104 - Recent Trends in the Utilization of Long-Acting Injectable Buprenorphine in Kentucky
W104 - 肯塔基州长效注射丁丙诺啡使用的最新趋势
  • DOI:
    10.1016/j.drugalcdep.2024.112046
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Lindsey Hammerslag;Anita Silwal;Michelle Lofwall;Laura Fanucchi;Patricia Freeman;Dustin Miracle;Feitong Lei;Katherine Marks;Svetla Slavova;Sharon Walsh;Jeffery Talbert
  • 通讯作者:
    Jeffery Talbert
S121 - Emerging Hot Spot Analyses for Rapid Actionable Data for Opioid Response in Kentucky (RADOR-KY)
S121 - 肯塔基州阿片类药物应对快速可操作数据的新兴热点分析(RADOR-KY)
  • DOI:
    10.1016/j.drugalcdep.2024.111541
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Daniel Harris;Jeffery Talbert;Svetla Slavova
  • 通讯作者:
    Svetla Slavova
M121 - Opioid-Related Poisoning in Kentucky Medicaid Beneficiaries Receiving Buprenorphine, Methadone or Naltrexone
M121 - 肯塔基州接受丁丙诺啡、美沙酮或纳曲酮治疗的医疗补助受益人的阿片类药物相关中毒
  • DOI:
    10.1016/j.drugalcdep.2023.110401
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Lindsey Hammerslag;Svetla Slavova;Feitong Lei;Emily Slade;Michelle Lofwall;Laura Fanucchi;Heather Bush;Patricia Freeman;Sharon Walsh;Jeffery Talbert
  • 通讯作者:
    Jeffery Talbert
HEALing Communities Study: Data measures for supporting a community-based intervention to reduce opioid overdose deaths
“治愈社区研究:支持基于社区的干预措施以减少阿片类药物过量死亡的数据测量”
  • DOI:
    10.1016/j.drugalcdep.2025.112738
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Svetla Slavova;Jennifer Villani;Daniel J. Feaster;Austin Booth;JaNae L. Holloway;Peter J. Rock;Lindsey R. Hammerslag;Aimee Mack;Charles E. Knott;John V. McCarthy;Jeffery Talbert;Marc R. LaRochelle;Bridget Freisthler;Brent J. Gibbons;Gregory Patts;Matthew J. Bullard;Sharon L. Walsh
  • 通讯作者:
    Sharon L. Walsh

Jeffery Talbert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

EA: Acquisition of analytical equipment for environmental biogeochemistry and mineralogy
EA:购置环境生物地球化学和矿物学分析设备
  • 批准号:
    2323242
  • 财政年份:
    2024
  • 资助金额:
    $ 113.66万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Aspect and Event Cognition in the Acquisition and Processing of a Second Language
博士论文研究:第二语言习得和处理中的方面和事件认知
  • 批准号:
    2337763
  • 财政年份:
    2024
  • 资助金额:
    $ 113.66万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 113.66万
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
  • 批准号:
    2335955
  • 财政年份:
    2024
  • 资助金额:
    $ 113.66万
  • 项目类别:
    Standard Grant
EA/Ed: Acquisition of a carbon dioxide and methane Cavity Ringdown Spectrometer for education and research
EA/Ed:购买二氧化碳和甲烷腔衰荡光谱仪用于教育和研究
  • 批准号:
    2329285
  • 财政年份:
    2024
  • 资助金额:
    $ 113.66万
  • 项目类别:
    Standard Grant
The effect of AI-assisted summary writing on second language acquisition
人工智能辅助摘要写作对第二语言习得的影响
  • 批准号:
    24K04154
  • 财政年份:
    2024
  • 资助金额:
    $ 113.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Doctoral Dissertation Research: Effects of non-verbal working memory and spoken first language proficiency on sign language acquisition by deaf second language learners
博士论文研究:非语言工作记忆和第一语言口语能力对聋哑第二语言学习者手语习得的影响
  • 批准号:
    2336589
  • 财政年份:
    2024
  • 资助金额:
    $ 113.66万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338395
  • 财政年份:
    2024
  • 资助金额:
    $ 113.66万
  • 项目类别:
    Continuing Grant
Conference: Child Language Acquisition Symposium for Indigenous Communities
会议:土著社区儿童语言习得研讨会
  • 批准号:
    2410232
  • 财政年份:
    2024
  • 资助金额:
    $ 113.66万
  • 项目类别:
    Standard Grant
EA: Acquisition of an X-ray Fluorescence Spectrometer for Research, Undergraduate Education, and STEM Outreach
EA:购买 X 射线荧光光谱仪用于研究、本科教育和 STEM 推广
  • 批准号:
    2327202
  • 财政年份:
    2024
  • 资助金额:
    $ 113.66万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了