Using Machine Learning to Provide Students with Rapid Feedback during Hands-on Cybersecurity Exercises

使用机器学习在网络安全实践练习中为学生提供快速反馈

基本信息

  • 批准号:
    2216492
  • 负责人:
  • 金额:
    $ 16.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This project aims to serve the national interest by using machine learning to provide students with timely feedback while completing hands-on cybersecurity exercises. A cyber informed citizenry is a vital part of our national defense strategy. Cybercrime is becoming increasingly sophisticated, and the systems and devices that need security are becoming ever more complex and interconnected. These issues highlight the need to develop programs that enable students to quickly obtain the fundamental skills and knowledge considered essential by cybersecurity experts. Hands-on cybersecurity exercises are known to provide students with basic cybersecurity knowledge, skills, and abilities. To be effective these exercises need to provide students with rapid feedback to prevent them from getting stuck and frustrated. The goal of this project is to use machine learning to monitor students as they work through hands-on cybersecurity exercises and automatically identify when they are getting stuck and frustrated. The students will then be given suggestions to help them to successfully complete the exercise. This project plans to use reinforcement learning to create, test, and deploy a semi-automated rapid hint system. The project intends to develop tools to collect hints directly from student-teacher interactions, which will then be used to teach the system which hints to apply and when. The system will interact with both the teacher and the student by suggesting hints as the system becomes more proficient. The hint system will be integrated into the EDURange platform but will be compatible with other cyberrange platforms such as DeterLab and KYPO. The PI team intends to offer workshops for faculty on how to use EDURange and the hint system. The hint system will collect data that will be analyzed to determine the efficacy of the tool, and to develop new hints and strategies for helping students. The NSF IUSE: EHR Program supports research and development projects to improve the effectiveness of STEM education for all students. Through the Engaged Student Learning track, the program supports the creation, exploration, and implementation of promising practices and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在通过使用机器学习为学生提供及时的反馈,同时完成动手网络安全练习,为国家利益服务。了解网络信息的公民是我们国防战略的重要组成部分。网络犯罪变得越来越复杂,需要安全的系统和设备变得越来越复杂和相互关联。这些问题突出了开发项目的必要性,使学生能够快速获得网络安全专家认为必不可少的基本技能和知识。实践网络安全练习为学生提供基本的网络安全知识、技能和能力。为了有效,这些练习需要为学生提供快速的反馈,以防止他们陷入困境和沮丧。这个项目的目标是使用机器学习来监控学生,因为他们通过实际操作网络安全练习,并自动识别他们何时陷入困境和沮丧。然后会给学生一些建议,帮助他们成功完成练习。该项目计划使用强化学习来创建、测试和部署一个半自动化的快速提示系统。该项目旨在开发工具,直接从学生与教师的互动中收集提示,然后用于教系统应用哪些提示以及何时使用。随着系统变得更加熟练,该系统将通过提示与老师和学生进行交互。该提示系统将集成到EDURange平台中,但将与其他网络测距平台(如DeterLab和KYPO)兼容。PI团队打算为教师提供如何使用EDURange和提示系统的研讨会。提示系统将收集数据并进行分析,以确定该工具的有效性,并开发新的提示和策略来帮助学生。NSF IUSE: EHR计划支持研究和开发项目,以提高所有学生STEM教育的有效性。通过参与学生学习轨道,该计划支持有前途的实践和工具的创建,探索和实施。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hands-On SQL Injection in the Classroom: Lessons Learned
课堂上的 SQL 注入实践:经验教训
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Weiss其他文献

Die Umwandlung der Dialkylidenzyklohexanone in die isomeren Dialkylphenole
  • DOI:
    10.1007/bf01522080
  • 发表时间:
    1934-12-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Richard Weiss;Josef Ebert
  • 通讯作者:
    Josef Ebert
Modified Steinberg relations for the group J 4
  • DOI:
    10.1007/bf00191940
  • 发表时间:
    1988-01-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Gernot Stroth;Richard Weiss
  • 通讯作者:
    Richard Weiss
Poster 205: Ellipse vs. Tracing: What Method do you Use to Measure a Median Nerve Cross-sectional Area Using Ultrasound?
  • DOI:
    10.1016/j.pmrj.2009.08.226
  • 发表时间:
    2009-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Roderick N. Sembrano;Monica Carrion-Jones;Erwin Manalo;Ann Nunez;Chase Stocks;Richard Weiss;Daniel Wong
  • 通讯作者:
    Daniel Wong
Über die Reaktionen deso-Phenylen-bis-(phenylglyoxals) und die Retrobenzilsäureumlagerung. Die Darstellung des 2, 3-Diphenyl-1, 4-dioxy-naphthalins
  • DOI:
    10.1007/bf01522205
  • 发表时间:
    1933-11-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Richard Weiss;Karl Bloch
  • 通讯作者:
    Karl Bloch
Über die Einwirkung deso-Tolylmagnesiumbromids auf das Dilacton der Benzophenon-o-dicarbonsäure
  • DOI:
    10.1007/bf01552463
  • 发表时间:
    1928-12-01
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Richard Weiss;Szassa R. Kratz
  • 通讯作者:
    Szassa R. Kratz

Richard Weiss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Weiss', 18)}}的其他基金

Collaborative Research: Modeling Student Activity and Learning on Cybersecurity Testbeds
协作研究:在网络安全测试平台上对学生活动和学习进行建模
  • 批准号:
    1723705
  • 财政年份:
    2017
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Standard Grant
Design of Molecular Gels with Exceptional Structural, Dynamic and Mechanical Properties
具有优异结构、动态和机械性能的分子凝胶的设计
  • 批准号:
    1502856
  • 财政年份:
    2015
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Continuing Grant
EDURange: Supporting cyber security education with hands-on exercises, a student-staffed help-desk, and webinars
EDURange:通过实践练习、学生服务台和网络研讨会支持网络安全教育
  • 批准号:
    1516730
  • 财政年份:
    2015
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Standard Grant
Design of Complex Materials from Structurally Simple Gelators, Ionic Liquids, and Polymers and their Applications
结构简单的胶凝剂、离子液体和聚合物的复杂材料的设计及其应用
  • 批准号:
    1147353
  • 财政年份:
    2012
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Standard Grant
Collaborative Research: TUES: Type 1: EDURange: A Cybersecurity Competition Platform to Enhance Undergraduate Security Analysis Skills
合作研究:TUES:类型 1:EDURange:提高本科生安全分析技能的网络安全竞赛平台
  • 批准号:
    1141341
  • 财政年份:
    2012
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Standard Grant
How do Molecules Self-Assemble into One-Dimensional Structures?
分子如何自组装成一维结构?
  • 批准号:
    0911089
  • 财政年份:
    2009
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Standard Grant
Correlations of Properties of Polymers, Gels, and Reversible Ionic Liquids at Different Length and Time Scales from Structural Data and Thermally or Photo Induced Dynamic Processes
根据结构数据和热或光诱导的动态过程,在不同长度和时间尺度下聚合物、凝胶和可逆离子液体的性质的相关性
  • 批准号:
    0714317
  • 财政年份:
    2007
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Continuing Grant
U.S.-Brazil Planning Visit for Studying Network Fiber Formation in Gels
美国-巴西计划访问研究凝胶中网络纤维的形成
  • 批准号:
    0555507
  • 财政年份:
    2006
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Standard Grant
Development, Investigation, and Applications of Polymers, Organogels, and Ionic Liquid Crystals through Thermal and Photochemical Reactions, Photophysics, and Structural Studies
通过热反应和光化学反应、光物理学和结构研究开发、研究和应用聚合物、有机凝胶和离子液晶
  • 批准号:
    0350538
  • 财政年份:
    2004
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Five-College Partnership for Information Assurance Education
合作研究:五所大学合作进行信息保障教育
  • 批准号:
    0416630
  • 财政年份:
    2004
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OCE-PRF: Using machine learning to investigate temporal dynamics of methane seep fauna at the Ocean Observatories Initiative (OOI) Regional Cabled Array
博士后奖学金:OCE-PRF:利用机器学习研究海洋观测计划 (OOI) 区域有线阵列中甲烷渗漏动物群的时间动态
  • 批准号:
    2307504
  • 财政年份:
    2024
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Standard Grant
An innovative cyber compliance platform using AI, live monitoring data and machine learning to automate compliance and due diligence completion.
一个创新的网络合规平台,使用人工智能、实时监控数据和机器学习来自动完成合规和尽职调查。
  • 批准号:
    10100493
  • 财政年份:
    2024
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Collaborative R&D
Accelerating pulse breeding using machine learning
利用机器学习加速豆类育种
  • 批准号:
    LP230100351
  • 财政年份:
    2024
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Linkage Projects
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Fellowship
Enhancing Condition Monitoring and Prognostics of Variable Speed Motor Drives Using Machine Learning and IoT Technologies
使用机器学习和物联网技术增强变速电机驱动器的状态监测和预测
  • 批准号:
    2910604
  • 财政年份:
    2024
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Studentship
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
  • 批准号:
    24K17615
  • 财政年份:
    2024
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
  • 批准号:
    10979324
  • 财政年份:
    2024
  • 资助金额:
    $ 16.14万
  • 项目类别:
A Human-Trustable Self-Improving Machine Learning Framework for Rapid Disaster Responses Using Satellite Sensor Imagery
人类可信的自我改进机器学习框架,利用卫星传感器图像快速响应灾难
  • 批准号:
    EP/X027732/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Research Grant
NSF-SNSF: Rapid Beamforming for Massive MIMO using Machine Learning on RF-only and Multi-modal Sensor Data
NSF-SNSF:在纯射频和多模态传感器数据上使用机器学习实现大规模 MIMO 的快速波束成形
  • 批准号:
    2401047
  • 财政年份:
    2024
  • 资助金额:
    $ 16.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了