Collaborative Research: DASS: Enabling Standards- and Disclosure-Based Regulations in and through Software Systems: Making Algorithmic Work Management Software Accountable to Law

合作研究:DASS:在软件系统中并通过软件系统实现基于标准和披露的法规:使算法工作管理软件对法律负责

基本信息

  • 批准号:
    2217723
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Software systems have become an integral part of public and private sector management, assisting and automating critical human decisions such as selecting people and allocating resources. Emerging evidence suggests that software systems for algorithmic management can significantly undermine workforce well-being and may be poorly suited to fostering accountability to existing labor law. For example, warehouse workers are under serious physical and psychological stress due to task assignment and tracking without appropriate break times. On-demand ride drivers feel that automated evaluation is unfair and distrust the system’s opaque payment calculations which has led to worker lawsuits for wage underpayment. Shift workers suffer from unpredictable schedules that destabilize work-life balance and disrupt their ability to plan ahead. Meanwhile, there is not yet an established mechanism to regulate such software systems. For example, there is no expert consensus on how to apply concepts of fairness in software systems. Existing work laws have not kept pace with emerging forms of work, such as algorithmic management and digital labor platforms that introduce new risk to workers, including work-schedule volatility and employer surveillance of workers both on and off the job. To tackle these challenges, we aim to develop technical approaches that can (1) make software accountable to existing law, and (2) address the gaps in existing law by measuring the negative impacts of certain software use and behavior, so as to help stakeholders better mitigate those effects. In other words, we aim to make software accountable to law and policy, and leverage it to make software users (individuals and firms) accountable to the affected population and the public. This project is developing novel methods to enable standards and disclosure-based regulation in and through software systems drawing from formal methods, human-computer interaction, sociology, public policy, and law throughout the software development cycle. The work will focus on algorithmic work scheduling, which impacts shift workers who make up 25% of workers in the United States. It will take a participatory approach involving stakeholders, public policy and legal experts, governments, commercial software companies, as well as software users in firms and those affected by the software’s use, in the software design and evaluation. The research will take place in three thrusts in the context of algorithmic scheduling: (1) participatory formalization of regulatory software requirements, (2) scalable and interactive formal methods and automated reasoning for software guarantees and decision support, and (3) regulatory outcome evaluation and monitoring. By developing accountable scheduling software, the project has the potential for significant broader impacts by giving businesses the tools they need for compliance with and accountability to existing work scheduling regulations, as well as the capacity to provide more schedule stability and predictability in their business operations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
软件系统已经成为公共和私营部门管理的一个组成部分,协助和自动化关键的人类决策,如选择人员和分配资源。新出现的证据表明,用于算法管理的软件系统可能会严重损害员工的福祉,并且可能不适合促进对现有劳动法的问责。例如,由于任务分配和跟踪没有适当的休息时间,仓库工人处于严重的身心压力之下。网约车司机们认为,自动评估是不公平的,而且不信任该系统不透明的支付计算方式,这导致了工人们以欠薪为由提起诉讼。倒班工人的工作日程难以预测,这破坏了工作与生活的平衡,也破坏了他们提前计划的能力。与此同时,目前还没有一个成熟的机制来规范这类软件系统。例如,对于如何在软件系统中应用公平性的概念,没有专家的共识。现有的劳动法律没有跟上新出现的工作形式的步伐,比如算法管理和数字劳动平台,给工人带来了新的风险,包括工作时间表的波动和雇主对工人在岗和下班的监督。为了应对这些挑战,我们的目标是开发能够(1)使软件对现有法律负责的技术方法,以及(2)通过测量某些软件使用和行为的负面影响来解决现有法律中的差距,从而帮助涉众更好地减轻这些影响。换句话说,我们的目标是使软件对法律和政策负责,并利用它使软件用户(个人和公司)对受影响的人群和公众负责。这个项目正在开发新的方法,在整个软件开发周期中,通过正式方法、人机交互、社会学、公共政策和法律,在软件系统中实现标准和基于披露的监管。这项工作将侧重于算法工作调度,这将影响到占美国工人总数25%的轮班工人。它将采取一种参与式的方法,涉及利益相关者、公共政策和法律专家、政府、商业软件公司,以及公司中的软件用户和受软件使用影响的人,参与软件的设计和评估。该研究将在算法调度的背景下进行三个重点:(1)监管软件需求的参与式形式化,(2)软件保证和决策支持的可扩展和交互式形式化方法和自动推理,以及(3)监管结果评估和监测。通过开发负责任的调度软件,该项目具有潜在的重要的广泛影响,因为它为企业提供了他们需要的工具,以遵守和负责现有的工作调度规则,以及在其业务操作中提供更多的调度稳定性和可预测性的能力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sicun Gao其他文献

Satisfiability modulo ODEs
可满足性模 ODE
Smaller Language Models are Better Black-box Machine-Generated Text Detectors
较小的语言模型是更好的黑盒机器生成的文本检测器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fatemehsadat Mireshghallah;Justus Mattern;Sicun Gao;R. Shokri;Taylor Berg
  • 通讯作者:
    Taylor Berg
Computable Analysis , Hybrid Automata , and Decision Procedures ( Extended Thesis Abstract )
可计算分析、混合自动机和决策程序(扩展论文摘要)
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sicun Gao
  • 通讯作者:
    Sicun Gao
Extracting Proofs from Branch-and-Prune
从分支和修剪中提取证明
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sicun Gao;Soonho Kong;Michael Wang;E. Clarke
  • 通讯作者:
    E. Clarke
4-2012 δ-Decidability over the Reals
4-2012 δ-实数可判定性
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sicun Gao;E. Clarke
  • 通讯作者:
    E. Clarke

Sicun Gao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sicun Gao', 18)}}的其他基金

Career: Correct-by-Learning Methods for Reliable Autonomy
职业:通过学习纠正方法实现可靠的自主性
  • 批准号:
    2047034
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
  • 批准号:
    2332722
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
  • 批准号:
    2332721
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DASS: Empirically Evaluating Data Fiduciary Privacy Laws
合作研究:DASS:实证评估数据信托隐私法
  • 批准号:
    2317115
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DASS: Assessing the Relationship Between Privacy Regulations and Software Development to Improve Rulemaking and Compliance
合作研究:DASS:评估隐私法规与软件开发之间的关系以改进规则制定和合规性
  • 批准号:
    2317185
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DASS: Accountable Open Source Infrastructure
合作研究:DASS:负责任的开源基础设施
  • 批准号:
    2317169
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DASS: Assessing Accountability of Tax Preparation Software Systems
合作研究:DASS:评估报税软件系统的责任
  • 批准号:
    2317207
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DASS: Empirically Evaluating Data Fiduciary Privacy Laws
合作研究:DASS:实证评估数据信托隐私法
  • 批准号:
    2317114
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DASS: Accountable Open Source Infrastructure
合作研究:DASS:负责任的开源基础设施
  • 批准号:
    2317168
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DASS: Assessing the Relationship Between Privacy Regulations and Software Development to Improve Rulemaking and Compliance
合作研究:DASS:评估隐私法规与软件开发之间的关系以改进规则制定和合规性
  • 批准号:
    2317184
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: DASS: Assessing Accountability of Tax Preparation Software Systems
合作研究:DASS:评估报税软件系统的责任
  • 批准号:
    2317206
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了