A Neural Network-based Optimal Control Framework for Colloidal Self-Assembly

基于神经网络的胶体自组装最优控制框架

基本信息

  • 批准号:
    2218077
  • 负责人:
  • 金额:
    $ 26.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Controlling colloidal self-assembly for ordered structures is a promising route to novel physicochemical properties, which stands to benefit applications in photonics, biomaterials, pharmaceutics, energy harvest, and advanced communication. However, high dimensionality and complex dynamics are barriers to rapid production of ordered structures. To overcome these barriers, accurate and generalizable state representation and a reliable and computationally efficient approach to describe and predict the system dynamics are needed. This project proposes a novel neural network-based optimal control framework, drawing on multidisciplinary expertise from colloidal systems, machine learning, and optimal control theory. The success of the work will: 1) contribute to a potentially automatable optimal control framework for rapid production of user-defined assembly structures, 2) benefit studies on related atomic and molecular self-assembly systems, such as crystallization for drug production and nuclear waste handling, as well as protein self-assembly; and 3) promote interdisciplinary research on combining advanced machine learning techniques and control theory to tackle complex problems that are challenging to address with traditional domain approaches. Throughout this project, the PI will educate and mentor students from middle school to the master’s level on molecular self-assembly, advanced control theory and machine learning topics. Focusing on an electric field-mediated colloidal self-assembly process, the researcher proposes a neural network-optimal control integrated approach, to tackle the long-standing challenges associated with controlling a stochastic and high dimensional small particle self-assembly process. A convolutional neural network will be used to represent and classify the system state, avoiding the extensive trial-and-error exploration and validation, and the limited transferability associated with order parameters. The project will also deploy a stochastic neural network, to be trained with time series of the assembly process, to capture and predict the system dynamics. Combining the convolutional and stochastic neural network with reinforcement learning, an optimal control policy will then be computed to guide the manipulation of the voltage level of the external electric field, to rapidly drive the assembly to the desired structure. The proposed work presents an innovative solution to state representation and classification, and an efficient system dynamics simulation of the stochastic, high dimensional colloidal system. Due to the data-driven nature of machine learning models, the proposed framework is transferable to systems with different internal interactions due to different driving forces and/or different particle sizes and shapes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
控制胶体自组装形成有序结构是一条很有前途的获得新物理化学性质的途径,在光子学、生物材料、药物、能量收集和先进通讯等领域有着广泛的应用前景。然而,高维数和复杂的动力学是快速生产有序结构的障碍。为了克服这些障碍,需要精确和可推广的状态表示和可靠且计算高效的方法来描述和预测系统动态。该项目提出了一种新的基于神经网络的最优控制框架,借鉴了胶体系统,机器学习和最优控制理论的多学科专业知识。这项工作的成功将:1)有助于快速生产用户自定义组装结构的潜在自动化最佳控制框架,2)有益于相关原子和分子自组装系统的研究,例如用于药物生产和核废料处理的结晶,以及蛋白质自组装; 3)促进跨学科研究,将先进的机器学习技术和控制理论相结合,以解决传统领域方法难以解决的复杂问题。在整个项目中,PI将在分子自组装、先进控制理论和机器学习主题方面教育和指导从中学到硕士的学生。针对电场介导的胶体自组装过程,研究人员提出了一种神经网络-最优控制集成方法,以解决与控制随机和高维小颗粒自组装过程相关的长期挑战。卷积神经网络将用于表示和分类系统状态,避免了广泛的试错探索和验证,以及与顺序参数相关的有限的可转移性。该项目还将部署一个随机神经网络,用装配过程的时间序列进行训练,以捕获和预测系统动态。将卷积和随机神经网络与强化学习相结合,然后计算最佳控制策略,以指导外部电场电压水平的操作,从而快速将组件驱动到所需的结构。所提出的工作提出了一个创新的解决方案,状态表示和分类,和一个有效的系统动力学模拟的随机,高维胶体系统。由于机器学习模型的数据驱动性质,拟议的框架可以转移到由于不同驱动力和/或不同颗粒大小和形状而具有不同内部交互的系统。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convolutional neural network-based colloidal self-assembly state classification
基于卷积神经网络的胶体自组装状态分类
  • DOI:
    10.1039/d3sm00139c
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Lizano, Andres;Tang, Xun
  • 通讯作者:
    Tang, Xun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xun Tang其他文献

Application Simulation Research Based on Visual Image Capture Technology in Sports Injury Rehabilitation
基于视觉图像捕捉技术在运动损伤康复中的应用模拟研究
Chronic cerebral hypoperfusion and blood-brain barrier disruption in uninjured brain areas of rhesus monkeys subjected to transient ischemic stroke
短暂性缺血性中风的恒河猴未受伤脑区的慢性脑灌注不足和血脑屏障破坏
  • DOI:
    10.1177/0271678x221078065
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingqian Zhang;Bangcheng Zhao;Qi Lai;Qinxi Li;Xun Tang;Yinbing Zhang;Zhixiang Pan;Qiang Gao;Zhihui Zhong
  • 通讯作者:
    Zhihui Zhong
Binary Regressions with Bounded Median Dependence
具有有界中值依赖性的二元回归
  • DOI:
    10.2139/ssrn.1332124
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xun Tang
  • 通讯作者:
    Xun Tang
Revisiting Design Issues of Local Models for Japanese Predicate-Argument Structure Analysis
重新审视日语谓词-论元结构分析的局部模型的设计问题
No Free Lunch in Soft Error Protection
软错误保护没有免费的午餐
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Polian;S. Reddy;I. Pomeranz;Xun Tang;B. Becker
  • 通讯作者:
    B. Becker

Xun Tang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xun Tang', 18)}}的其他基金

EAGER: Design of an RNA-based Dual Regulator for Repetitive Gene Expression Regulation
EAGER:设计基于 RNA 的重复基因表达调控双调节器
  • 批准号:
    2223720
  • 财政年份:
    2022
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Collaborative Research: Empirical Analysis of Social Network with Unreported Links
协作研究:具有未报告链接的社交网络的实证分析
  • 批准号:
    1919489
  • 财政年份:
    2019
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
  • 批准号:
    2334690
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
Development of a neural-network-based accelerator for holography
开发基于神经网络的全息加速器
  • 批准号:
    22KK0183
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
  • 批准号:
    10680206
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
Development of reaction-diffusion based neural network systems
基于反应扩散的神经网络系统的开发
  • 批准号:
    23H00506
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Safe Lyapunov-Based Deep Neural Network Adaptive Control of a Rehabilitative Upper Extremity Hybrid Exoskeleton
基于安全李亚普诺夫的深度神经网络自适应控制康复上肢混合外骨骼
  • 批准号:
    2230971
  • 财政年份:
    2023
  • 资助金额:
    $ 26.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了