MCA: Improving understanding of controls over spatial heterogeneity in dryland soil carbon pools in the age of big data
MCA:提高大数据时代对旱地土壤碳库空间异质性控制的理解
基本信息
- 批准号:2219027
- 负责人:
- 金额:$ 49.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Soils may alter the trajectory of climate change because of their potential to store or release large amounts of carbon, thus altering the concentration of atmospheric carbon dioxide. However, understanding and predicting current and future soil carbon dynamics requires the capability to accurately describe spatial patterns of soil carbon and forecast changes via reliable models. At present, patterns and controls over soil carbon cycle processes are poorly resolved in dryland (arid and semi-arid) ecosystems, which cover nearly half of Earth's terrestrial surface and store one third of global soil carbon. The ‘big data’ revolution has dramatically increased data available to address ecological problems such soil carbon dynamics. However, effective use of big data requires sophisticated data handling skills and use of emerging analytical tools such as machine learning and application of these tools to process modeling. This project will advance the investigator’s research skills in big data handling and will enhance their ability to mentor students in modern approaches to data-intensive ecological problems. Machine learning and process modeling will be used to increase understanding of patterns and controls over spatial heterogeneity in dryland soil carbon. This information is critical for scientifically based evaluation of dryland management strategies of soil carbon storage. This project will explore patterns and mechanistic controls over spatial heterogeneity in dryland soil organic carbon pools. Exploring patterns in two contrasting dryland settings, a semi-arid grassland with well-documented long-term management and vegetation change and a poorly characterized hyper-arid system, will provide deeper understanding of the relationships between environmental variables and soil organic carbon across drylands. Coupling this exploration of soil organic carbon spatial patterns with process modeling will enhance understanding of the mechanistic drivers of soil organic carbon heterogeneity. Spatial downscaling of a deep learning enhanced earth system modeling approach will provide insight into the fine scale mechanisms that drive soil organic carbon heterogeneity and how they respond to environmental change. This mid-career advancement grant will enable the primary investigator to: develop skills for handling and analyzing large and complex data sets; use machine learning approaches to describe spatial patterns of heterogeneity in soil organic carbon pools in two contrasting dryland field sites where the primary investigator has extensive prior experience and data, and; apply a deep learning enhanced earth system model to a dryland site and use this model to explore mechanistic drivers of carbon cycling. This project will build mutually beneficial partnerships between the primary investigator and two research partners, and an engineer with expertise in machine learning and remote sensing and an expert in ecological process models and deep learning enhanced earth system modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
土壤可能会改变气候变化的轨迹,因为它们有可能储存或释放大量的碳,从而改变大气中二氧化碳的浓度。然而,理解和预测当前和未来的土壤碳动态需要能够准确地描述土壤碳的空间格局,并通过可靠的模型预测变化。目前,旱地(干旱和半干旱)生态系统对土壤碳循环过程的模式和控制没有很好的解决,旱地生态系统覆盖了地球近一半的陆地表面,储存了全球三分之一的土壤碳。“大数据”革命极大地增加了可用于解决土壤碳动态等生态问题的数据。然而,大数据的有效使用需要复杂的数据处理技能和使用新兴的分析工具,如机器学习和应用这些工具进行流程建模。该项目将提高研究人员在大数据处理方面的研究技能,并提高他们指导学生采用现代方法解决数据密集型生态问题的能力。机器学习和过程建模将用于提高对旱地土壤碳空间异质性的模式和控制的理解。这一信息对于科学地评估旱地土壤碳储存管理战略至关重要。 本项目将探讨旱地土壤有机碳库空间异质性的模式和机制控制。在两种截然不同的旱地环境中探索模式,一种是长期管理和植被变化记录良好的半干旱草原,另一种是特征不明确的超干旱系统,将有助于更深入地了解旱地环境变量与土壤有机碳之间的关系。将土壤有机碳空间格局的探索与过程建模相结合,将有助于加深对土壤有机碳异质性机制驱动因素的理解。深度学习增强的地球系统建模方法的空间降尺度将提供对驱动土壤有机碳异质性的精细尺度机制以及它们如何响应环境变化的洞察。这项中期职业发展补助金将使主要研究人员能够:发展处理和分析大型复杂数据集的技能;使用机器学习方法描述两个对比鲜明的旱地实地土壤有机碳库异质性的空间模式,主要研究人员拥有丰富的经验和数据;将深度学习增强型地球系统模型应用于旱地,并使用该模型探索碳循环的机械驱动因素。该项目将在主要研究者和两个研究合作伙伴之间建立互利的合作伙伴关系,以及一名拥有机器学习和遥感专业知识的工程师和一名生态过程模型和深度学习增强地球系统建模的专家。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather Throop其他文献
Heather Throop的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Heather Throop', 18)}}的其他基金
Collaborative Research: MRA: Resolving and scaling litter decomposition controls from leaf to landscape in North American drylands
合作研究:MRA:解决和扩展北美旱地从树叶到景观的垃圾分解控制
- 批准号:
2307195 - 财政年份:2024
- 资助金额:
$ 49.58万 - 项目类别:
Continuing Grant
IRES Track 1: Ecological responses to rainfall across the Namib Desert climate gradient
IRES 轨道 1:纳米布沙漠气候梯度降雨的生态响应
- 批准号:
1854156 - 财政年份:2019
- 资助金额:
$ 49.58万 - 项目类别:
Standard Grant
CAREER: Soil organic carbon dynamics in response to long-term ecological changes in drylands: an integrated program for carbon cycle research and enhancing climate change literacy
职业:响应旱地长期生态变化的土壤有机碳动态:碳循环研究和提高气候变化素养的综合计划
- 批准号:
1620476 - 财政年份:2015
- 资助金额:
$ 49.58万 - 项目类别:
Continuing Grant
CAREER: Soil organic carbon dynamics in response to long-term ecological changes in drylands: an integrated program for carbon cycle research and enhancing climate change literacy
职业:响应旱地长期生态变化的土壤有机碳动态:碳循环研究和提高气候变化素养的综合计划
- 批准号:
0953864 - 财政年份:2010
- 资助金额:
$ 49.58万 - 项目类别:
Continuing Grant
COLLABORATIVE RESEARCH: Decomposition in drylands: Soil erosion and UV interactions
合作研究:旱地分解:土壤侵蚀和紫外线相互作用
- 批准号:
0815808 - 财政年份:2008
- 资助金额:
$ 49.58万 - 项目类别:
Continuing Grant
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
- 批准号:
MR/Y034244/1 - 财政年份:2025
- 资助金额:
$ 49.58万 - 项目类别:
Fellowship
Improving efficacy of biopesticides through understanding mode of action
通过了解作用方式提高生物农药的功效
- 批准号:
IE230100103 - 财政年份:2024
- 资助金额:
$ 49.58万 - 项目类别:
Early Career Industry Fellowships
Improving the Evidence-Based Design of Nature-based Solutions by Understanding the Trade-Offs and Synergies of Ecosystem Services in a Tropical Develo
通过了解热带开发中生态系统服务的权衡和协同作用,改进基于自然的解决方案的循证设计
- 批准号:
2908202 - 财政年份:2024
- 资助金额:
$ 49.58万 - 项目类别:
Studentship
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
- 批准号:
2326937 - 财政年份:2023
- 资助金额:
$ 49.58万 - 项目类别:
Continuing Grant
Enhancing cellulase activity through single-molecule imaging and protein engineering as a testbed for understanding and improving enzymatic deconstruction of insoluble substrates
通过单分子成像和蛋白质工程增强纤维素酶活性,作为理解和改进不溶性底物酶解构的测试平台
- 批准号:
2301377 - 财政年份:2023
- 资助金额:
$ 49.58万 - 项目类别:
Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
- 批准号:
2303568 - 财政年份:2023
- 资助金额:
$ 49.58万 - 项目类别:
Continuing Grant
Improving water quality modelling by better understanding solute transport
通过更好地了解溶质迁移来改进水质建模
- 批准号:
DP230100618 - 财政年份:2023
- 资助金额:
$ 49.58万 - 项目类别:
Discovery Projects
Improving understanding of lung immunity in tuberculosis to establish a diverse, innovative TB vaccine pipeline targeting mucosal immunity
提高对结核病肺免疫的了解,建立针对粘膜免疫的多样化、创新型结核疫苗管道
- 批准号:
10068466 - 财政年份:2023
- 资助金额:
$ 49.58万 - 项目类别:
EU-Funded
Improving our understanding of the atmospheric sulfur cycle and its impact on air pollution and climate
提高我们对大气硫循环及其对空气污染和气候影响的了解
- 批准号:
2885122 - 财政年份:2023
- 资助金额:
$ 49.58万 - 项目类别:
Studentship
Characterising and improving understanding of mesoscale convective systems over south-east Asia using machine learning
使用机器学习表征和提高对东南亚中尺度对流系统的理解
- 批准号:
2886050 - 财政年份:2023
- 资助金额:
$ 49.58万 - 项目类别:
Studentship