CAREER: Enhancing the User Experience of Privacy Preference Specification

职业:增强隐私偏好规范的用户体验

基本信息

  • 批准号:
    2219354
  • 负责人:
  • 金额:
    $ 68.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-11-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The privacy settings provided by people's computers and mobile devices are the primary means by which users engage in privacy management. The constant stream of privacy related scandals and controversies highlight the challenges people face in understanding and utilizing these privacy settings to achieve the levels of privacy they desire. This research aims to overcome these challenges by developing and testing techniques to enhance the people's experience with their privacy preference specifications. The techniques to be developed and evaluated include minimizing the effort and complexity of setting privacy preferences and enabling user imitation of the privacy settings of trusted experts. These technique could help non-experts find, understand, and utilize available privacy settings appropriately and effectively, thus significantly aligning system operation with people's privacy expectations. This research will conduct research into two strategies for increasing the usability of privacy settings. The first is to prioritize and customize user privacy settings by breaking down privacy management tasks into manageable segments for users. The second is to leverage expert community support for individuals' privacy protection. The project involves conducting user studies that inform the design and development of each of the proposed techniques. These techniques retain the human-in-the-loop and provide a useful complement to automated predictive approaches. Findings from the research studies will be used to implement mockups and prototypes that will be evaluated and iteratively refined via pilots and field studies. The research activities will be integrated with educational components using active learning principles. Student involvement in courses and mentoring activities will generate insight related to the research project and the results will be incorporated in course development and curriculum design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由人们的计算机和移动的设备提供的隐私设置是用户参与隐私管理的主要手段。与隐私相关的丑闻和争议不断,凸显了人们在理解和利用这些隐私设置以实现他们所期望的隐私水平方面所面临的挑战。本研究旨在通过开发和测试技术来克服这些挑战,以增强人们对隐私偏好规范的体验。待开发和评估的技术包括最大限度地减少设置隐私偏好的工作量和复杂性,并使用户能够模仿可信专家的隐私设置。这些技术可以帮助非专家找到,理解,并适当和有效地利用可用的隐私设置,从而显着调整系统操作与人们的隐私期望。 本研究将研究两种策略,以提高隐私设置的可用性。第一种是通过将隐私管理任务分解为用户可管理的部分来优先考虑和自定义用户隐私设置。第二是利用专家社区对个人隐私保护的支持。该项目涉及进行用户研究,为每种拟议技术的设计和开发提供信息。这些技术保留了人在回路中,并为自动预测方法提供了有用的补充。研究结果将用于实施模型和原型,这些模型和原型将通过试点和实地研究进行评估和迭代改进。研究活动将与使用积极学习原则的教育部分相结合。学生参与课程和指导活动将产生与研究项目相关的见解,其结果将纳入课程开发和课程设计。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Still Creepy After All These Years:The Normalization of Affective Discomfort in App Use
这么多年了仍然令人毛骨悚然:应用程序使用中情感不适的正常化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sameer Patil其他文献

Efficient Deep Learning model for de-husked Areca nut classification
用于去壳槟榔分类的高效深度学习模型
Fixing Stray Traditions in Gingers II: Explicating the Identity of Zingiber marginatum (Zingiberaceae)
  • DOI:
    10.1007/s40009-022-01146-2
  • 发表时间:
    2022-08-06
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Sameer Patil;Sushil Kumar Singh;Ramesh Kumar;Sachin Sharma
  • 通讯作者:
    Sachin Sharma
Targets of Weaponized Islamophobia: The Impact of Misinformation on the Online Practices of Muslims in the United States
武器化伊斯兰恐惧症的目标:错误信息对美国穆斯林在线行为的影响

Sameer Patil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sameer Patil', 18)}}的其他基金

SaTC: EDU: Collaborative: Incorporating Sociotechnical Cybersecurity Learning Within Undergraduate Capstone Courses
SaTC:EDU:协作:将社会技术网络安全学习纳入本科顶点课程
  • 批准号:
    2221870
  • 财政年份:
    2022
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: An Incident-Response Approach for Empowering Fact-Checkers
协作研究:SaTC:核心:媒介:增强事实检查人员能力的事件响应方法
  • 批准号:
    2154123
  • 财政年份:
    2022
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Standard Grant
CAREER: Enhancing the User Experience of Privacy Preference Specification
职业:增强隐私偏好规范的用户体验
  • 批准号:
    1845626
  • 财政年份:
    2019
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Continuing Grant
SaTC: EDU: Collaborative: Incorporating Sociotechnical Cybersecurity Learning Within Undergraduate Capstone Courses
SaTC:EDU:协作:将社会技术网络安全学习纳入本科顶点课程
  • 批准号:
    1821782
  • 财政年份:
    2018
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Standard Grant
EAGER: Privacy Compliance by Design: Ideation Techniques to Facilitate System Design Compliant with Privacy Laws and Regulations
EAGER:通过设计实现隐私合规:促进系统设计符合隐私法律法规的构思技术
  • 批准号:
    1727574
  • 财政年份:
    2016
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Standard Grant
EAGER: Privacy Compliance by Design: Ideation Techniques to Facilitate System Design Compliant with Privacy Laws and Regulations
EAGER:通过设计实现隐私合规:促进系统设计符合隐私法律法规的构思技术
  • 批准号:
    1548779
  • 财政年份:
    2015
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411299
  • 财政年份:
    2024
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411296
  • 财政年份:
    2024
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411295
  • 财政年份:
    2024
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411294
  • 财政年份:
    2024
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Standard Grant
Enhancing User Experience with Partner Robot
与合作伙伴机器人增强用户体验
  • 批准号:
    23K13286
  • 财政年份:
    2023
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Safeguarding Smart Homes: A Foundation for Building User Privacy-Enhancing IoT Systems
职业:保护智能家居:构建增强用户隐私的物联网系统的基础
  • 批准号:
    2238701
  • 财政年份:
    2023
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Continuing Grant
CAREER: Enhancing Mobile Application Security through Contextual Integrity and User Awareness
职业:通过上下文完整性和用户意识增强移动应用程序安全性
  • 批准号:
    2318483
  • 财政年份:
    2023
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Continuing Grant
Enhancing User Interfaces to Support Privacy Mental Models
增强用户界面以支持隐私心理模型
  • 批准号:
    DGECR-2022-00366
  • 财政年份:
    2022
  • 资助金额:
    $ 68.53万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了