Collaborative Research: CISE-MSI: DP: IIS: Hybrid-Architecture Symbolic Parser with Neural Lexicon
合作研究:CISE-MSI:DP:IIS:带有神经词典的混合架构符号解析器
基本信息
- 批准号:2219712
- 负责人:
- 金额:$ 39.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An utterance is grammatical if it conforms to the speaker's mental grammar. But grammatical utterances may be ambiguous. Ambiguity, the assignment of multiple representations and interpretations for one utterance, is an undesirable byproduct of language use for efficient communication; nevertheless, ambiguity is pervasive in language performance, since mental linguistic representations have a hierarchical structure, yet language externalization is linear due to sensory-motor constraints. This Hybrid-Architecture Symbolic Parser and Neural Lexicon system (HASPNeL) judges whether a given utterance is grammatical and detects whether it is ambiguous at the word or sentence level. HASPNeL is also a computational cognitive model of human language following current syntactic theory on Minimalist grammars, which must satisfy conditions of learnability, evolvability, and universality. Although the advantages of a hybrid symbolic-probabilistic architecture have been documented in relevant literature, there is not yet any comparable system based upon this architecture. HASPNeL is expected to impact the development of applications for education and industry (particularly applicable to underrepresented languages for which there is not enough available data), and to further research and advancement of human language cognitive models and technologies. HASPNeL's hybrid architecture comprises a feature-unification parser and structure generator, which is encoded using a symbolic AI approach, and a machine learning tagger that is used to construct a feature-enriched lexicon. An annotated synthetic corpus trains a neural network system that properly identifies and tags each lexical item and estimates the likelihood of each category within the corpus. To account for lexical ambiguity, tokens with different categories, features or meanings are assigned different entries. The system only parses grammatical utterances, recognizes ambiguous utterances by producing as many syntactic representations as there were possible interpretations, and calculates the likelihood for each structural description. HASPNeL is able to account for syntactic variation by minor parametric adjustments to grammatical and lexical features.This project is jointly funded by MSI and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
话语是语法的,如果它符合说话者的精神语法。但是语法话语可能是模棱两可的。歧义是一种语言的多种表示和解释的分配,是语言使用的不良副产品,以进行有效的交流。然而,由于精神语言表征具有层次结构,因此歧义性在语言表现上普遍存在,但是由于感觉运动的限制,语言外部化是线性的。这种混合体系结构的象征性解析器和神经词典系统(HASPNEL)判断给定的话语是语法上的,并检测到在单词还是句子级别上是模棱两可的。 Haspnel也是人类语言的计算认知模型,遵循有关最低限度语法的当前句法理论,该理论必须满足可学习性,可发展性和普遍性的条件。尽管在相关文献中已经记录了混合象征性 - 稳定体系结构的优势,但基于此体系结构尚无任何可比较的系统。预计Haspnel将影响教育和行业应用程序的发展(尤其适用于没有足够可用数据的代表性不足的语言),并进一步研究和进步人类语言认知模型和技术。 Haspnel的混合体系结构包括一个功能统一解析器和结构生成器,该解析器和结构生成器使用符号AI方法编码,以及用于构造功能增强词典的机器学习标签器。带注释的合成语料库训练一个神经网络系统,该系统正确识别和标记每个词汇项目,并估计语料库中每个类别的可能性。为了说明词汇歧义,具有不同类别,功能或含义的令牌分配了不同的条目。该系统仅解析语法话语,通过产生与可能的解释一样多的句法表示来识别歧义话语,并计算每个结构描述的可能性。 HASPNeL is able to account for syntactic variation by minor parametric adjustments to grammatical and lexical features.This project is jointly funded by MSI and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hilton Alers-Valentin其他文献
Hilton Alers-Valentin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CISE: Large: Cross-Layer Resilience to Silent Data Corruption
协作研究:CISE:大型:针对静默数据损坏的跨层弹性
- 批准号:
2321492 - 财政年份:2023
- 资助金额:
$ 39.44万 - 项目类别:
Continuing Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
$ 39.44万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318593 - 财政年份:2023
- 资助金额:
$ 39.44万 - 项目类别:
Standard Grant
Collaborative Research: Conference: 2023 CISE Education and Workforce PI and Community Meeting
协作研究:会议:2023 年 CISE 教育和劳动力 PI 和社区会议
- 批准号:
2318592 - 财政年份:2023
- 资助金额:
$ 39.44万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
- 批准号:
2318703 - 财政年份:2023
- 资助金额:
$ 39.44万 - 项目类别:
Standard Grant