Collaborative Research: Visual Tactile Neural Fields for Active Digital Twin Generation

合作研究:用于主动数字孪生生成的视觉触觉神经场

基本信息

  • 批准号:
    2220867
  • 负责人:
  • 金额:
    $ 33.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Robots will perform better at everyday activities when they can quickly combine their sensory data into a model of their environment, just like how humans instinctively use all their senses and knowledge to accomplish daily tasks. Robots, however, must be programmed to create these models that humans do intuitively, effortlessly, and robustly. This robotics project explores a novel algorithmic approach that combines visual and tactile sensory data with a knowledge of physics and a capability to learn that makes robot planning and reasoning more effective, efficient, and adaptable. The project includes the development and testing of research prototypes, preparation of new curriculum, and outreach to high school students and teachers and to the general public.This project introduces a new data representation, called a Visual Tactile Neural Field (VTNF), that allows robots to combine data from visual and tactile sensors to create a unified model of an object. The VTNF is designed to be used in a closed-loop manner, where a robot may use data from its physical interactions with an object to create or improve a model and may use its current understanding of a model to inform how best to interact with a physical object. Towards this end, the investigators create the mathematical techniques, computational tools, and robot hardware necessary to generate a VTNF model. The investigators also develop techniques to quantify the uncertainty about an object and use this uncertainty to learn search policies that allow robots to generate accurate models as quickly as possible. The VTNF, which allows for the easy addition of new properties about an object, provides a flexible representational foundation for other researchers and practitioners to use to enable robots to learn faster by having a more detailed understanding of both the surrounding environment and their interactions with it.This project is supported by the cross-directorate Foundational Research program in Robotics and the National Robotics Initiative, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当机器人能够快速地将它们的感官数据联合收割机结合到它们所处环境的模型中时,它们在日常活动中的表现会更好,就像人类本能地使用所有的感官和知识来完成日常任务一样。然而,机器人必须被编程来创建这些模型,人类可以直观地,毫不费力地和健壮地创建这些模型。这个机器人项目探索了一种新的算法方法,将视觉和触觉传感数据与物理知识和学习能力相结合,使机器人规划和推理更加有效,高效和适应性强。该项目包括研究原型的开发和测试,新课程的准备,以及对高中学生和教师以及普通公众的宣传。该项目引入了一种新的数据表示,称为视觉触觉神经场(VTNF),允许机器人联合收割机将来自视觉和触觉传感器的数据结合起来,以创建一个统一的物体模型。VTNF被设计为以闭环方式使用,其中机器人可以使用来自其与对象的物理交互的数据来创建或改进模型,并且可以使用其对模型的当前理解来告知如何最好地与物理对象交互。为此,研究人员创建了生成VTNF模型所需的数学技术,计算工具和机器人硬件。研究人员还开发了量化对象不确定性的技术,并利用这种不确定性来学习搜索策略,使机器人能够尽快生成准确的模型。VTNF允许轻松添加有关对象的新属性,为其他研究人员和从业人员提供了灵活的代表性基础,使机器人能够通过更详细地了解周围环境及其与环境的相互作用来更快地学习。该项目得到了机器人跨部门基础研究计划和国家机器人计划的支持,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monroe Kennedy其他文献

Optimal Paths for Polygonal Robots in SE(2)
SE 中多边形机器人的最优路径(2)
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Monroe Kennedy;Dinesh Thakur;M. A. Hsieh;S. Bhattacharya;Vijay R. Kumar
  • 通讯作者:
    Vijay R. Kumar
Decentralized Algorithm for Force Distribution With Applications to Cooperative Transport
力分配分散算法及其在协作运输中的应用
Modeling and Control for Robotic Assistants: Single and Multi-robot Manipulation
机器人助手的建模和控制:单机器人和多机器人操作
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Monroe Kennedy
  • 通讯作者:
    Monroe Kennedy
DenseTact-Mini: An Optical Tactile Sensor for Grasping Multi-Scale Objects From Flat Surfaces
DenseTact-Mini:用于从平面抓取多尺度物体的光学触觉传感器
  • DOI:
    10.48550/arxiv.2309.08860
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Won Kyung Do;A. K. Dhawan;Mathilda Kitzmann;Monroe Kennedy
  • 通讯作者:
    Monroe Kennedy
Replay Overshooting: Learning Stochastic Latent Dynamics with the Extended Kalman Filter
重播超调:使用扩展卡尔曼滤波器学习随机潜在动力学

Monroe Kennedy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Monroe Kennedy', 18)}}的其他基金

CAREER: Soft Robotic Fingertips with High-Resolution, Calibrated Shape and Force Sensing for Dexterous Manipulation
职业:具有高分辨率、经过校准的形状和力感应的软机器人指尖,可实现灵巧的操作
  • 批准号:
    2142773
  • 财政年份:
    2022
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Using Machine Learning to Improve Visual Problem-Solving in Chemistry Education
协作研究:利用机器学习提高化学教育中的视觉问题解决能力
  • 批准号:
    2235790
  • 财政年份:
    2023
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Indigenous Northern Landscapes, Visual Repatriation, and Collaborative Knowledge Exchange
合作研究:北方本土景观、视觉归还和合作知识交流
  • 批准号:
    2330924
  • 财政年份:
    2023
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual Information about surface curvature from patterns of image shading and contours
合作研究:从图像阴影和轮廓图案中获取有关表面曲率的视觉信息
  • 批准号:
    2238180
  • 财政年份:
    2023
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Visual Information about surface curvature from patterns of image shading and contours
合作研究:从图像阴影和轮廓图案中获取有关表面曲率的视觉信息
  • 批准号:
    2238179
  • 财政年份:
    2023
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Modeling and Mitigating Confirmation Bias in Visual Data Analysis
合作研究:HCC:媒介:可视化数据分析中的建模和减轻确认偏差
  • 批准号:
    2311575
  • 财政年份:
    2023
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Indigenous Northern Landscapes, Visual Repatriation, and Collaborative Knowledge Exchange
合作研究:北方本土景观、视觉归还和合作知识交流
  • 批准号:
    2330923
  • 财政年份:
    2023
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Indigenous Northern Landscapes, Visual Repatriation, and Collaborative Knowledge Exchange
合作研究:北方本土景观、视觉归还和合作知识交流
  • 批准号:
    2330922
  • 财政年份:
    2023
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Using Machine Learning to Improve Visual Problem-Solving in Chemistry Education
协作研究:利用机器学习提高化学教育中的视觉问题解决能力
  • 批准号:
    2235485
  • 财政年份:
    2023
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Collaborative Research: HCC: Medium: Modeling and Mitigating Confirmation Bias in Visual Data Analysis
合作研究:HCC:媒介:可视化数据分析中的建模和减轻确认偏差
  • 批准号:
    2311574
  • 财政年份:
    2023
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding how visual features of misinformation influence credibility perceptions
协作研究:SaTC:核心:小:了解错误信息的视觉特征如何影响可信度认知
  • 批准号:
    2150723
  • 财政年份:
    2022
  • 资助金额:
    $ 33.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了