Power-Efficient Long Short-term Memory
高能效长短期记忆
基本信息
- 批准号:2221174
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
If artificial intelligence could be embedded into small, self-powered sensors, it would be useful in the following scenarios. In precision agriculture, such sensors could forecast frost to avoid crop damage; monitor the local bird population for harmful versus beneficial species; and assess soil conditions for efficient irrigation. In smart factories, such sensors could be used for predictive maintenance, thus minimizing the costly downtime that is caused both by undetected equipment failure and by overly-frequent, scheduled servicing. In consumer healthcare, such sensors could be worn on the body to detect sleep apnea, track mental health state or measure blood pressure, all without bulky, obtrusive batteries or the disruption of frequent recharging. Unfortunately, even in moderately complex applications, artificial intelligence requires more power than a self-powered sensor can provide. To address this problem, we propose to develop a new type of artificial intelligence that requires no more power to run than is available in a self-powered sensor.The goal of the research is to design, implement and evaluate an analog long short-term memory (LSTM) that is 16 times more power-efficient than the state-of-the-art. We will achieve this power efficiency with the following methods: we will use (1) fewer inputs and (2) fewer operations than the state-of-the-art. Our approach is compatible with conventional power reduction strategies like compute-in-memory, weight quantization, knowledge distillation or network pruning. Further, our approach is robust to analog mismatch. We will demonstrate our approach in a keyword spotting task, although the same principles can be extended to other applications. The intellectual significance of the proposed activity is that it will advance the field of ubiquitous sensors by developing a new LSTM paradigm that is 16 times more power efficient than the state-of-the-art. The resulting energy-efficient ubiquitous sensors will increase capabilities across different fields, from industrial to agricultural and consumer healthcare applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如果人工智能可以嵌入到小型、自供电的传感器中,它将在以下场景中有用。在精准农业中,这种传感器可以预测霜冻,以避免对作物造成损害;监测当地鸟类种群的有害物种与有益物种;并评估土壤条件,以实现有效灌溉。在智能工厂中,这种传感器可以用于预测性维护,从而最大限度地减少因未检测到的设备故障和过于频繁的定期维修而造成的代价高昂的停机时间。在消费者医疗保健领域,这种传感器可以佩戴在身体上,以检测睡眠呼吸暂停、跟踪心理健康状态或测量血压,所有这些都不需要笨重、刺眼的电池,也不会中断频繁充电。不幸的是,即使在中等复杂的应用中,人工智能也需要比自供电传感器所能提供的更多的电力。为了解决这个问题,我们建议开发一种新型的人工智能,它不需要比自供电传感器更多的电力来运行。研究的目标是设计、实现和评估一种模拟长期短期存储器(LSTM),它的能效是最先进的16倍。我们将通过以下方法实现这一能效:(1)使用比最先进技术更少的输入和(2)更少的操作。我们的方法与传统的能量削减策略兼容,如内存计算、权重量化、知识提取或网络剪枝。此外,我们的方法对模拟失配具有很强的鲁棒性。我们将在关键字识别任务中演示我们的方法,尽管相同的原则可以扩展到其他应用程序。拟议活动的智力意义在于,它将通过开发一种新的LSTM范例来推动无处不在传感器领域的发展,这种范例的能效是最先进的16倍。由此产生的高能效无处不在的传感器将提高不同领域的能力,从工业到农业和消费者医疗保健应用。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kofi Odame其他文献
A microphone readout interface with 74-dB SNDR
- DOI:
10.1007/s10470-014-0383-0 - 发表时间:
2014-08-10 - 期刊:
- 影响因子:1.400
- 作者:
Dingkun Du;Kofi Odame - 通讯作者:
Kofi Odame
An energy-efficient spike encoding circuit for speech edge detection
- DOI:
10.1007/s10470-013-0041-y - 发表时间:
2013-02-21 - 期刊:
- 影响因子:1.400
- 作者:
Dingkun Du;Kofi Odame - 通讯作者:
Kofi Odame
Kofi Odame的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kofi Odame', 18)}}的其他基金
SCH: INT: A noninvasive cardiac output device for telemonitoring
SCH:INT:用于远程监测的无创心输出量设备
- 批准号:
1418497 - 财政年份:2014
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Power-aware sensor interfacing and signal processing using nonlinear analog techniques
使用非线性模拟技术的功耗感知传感器接口和信号处理
- 批准号:
1128478 - 财政年份:2011
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
相似海外基金
Realization of efficient intramolecular hopping transport in long pi-conjugated systems and its-based novel functions
长π共轭体系中高效分子内跳跃传输的实现及其新功能
- 批准号:
23K17947 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Developing High Order Stable and Efficient Methods for Long Time Simulations of Gravitational Waveforms
开发高阶稳定且有效的方法来长时间模拟引力波形
- 批准号:
2309609 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Latent Space Simulators for the Efficient Estimation of Long-time Molecular Thermodynamics and Kinetics
用于有效估计长时间分子热力学和动力学的潜在空间模拟器
- 批准号:
2152521 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Highly-efficient and smart Power Electronics Systems for long-lasting energy storage Systems in smart grid applications
用于智能电网应用中持久储能系统的高效智能电力电子系统
- 批准号:
RGPIN-2016-06519 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Secure, Reliable, and Efficient Long-Term Storage
合作研究:CNS核心:中:安全、可靠、高效的长期存储
- 批准号:
2106263 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
Development of efficient muon trigger system for long-lived particles in the ATLAS experiment
在 ATLAS 实验中开发长寿命粒子的高效 μ 介子触发系统
- 批准号:
21K03589 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of the long-term performance of eco-efficient low-porosity concrete systems towards a more sustainable future of the construction industry
研究生态高效低孔隙率混凝土系统的长期性能,以实现建筑业更加可持续的未来
- 批准号:
544257-2019 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: CNS Core: Medium: Secure, Reliable, and Efficient Long-Term Storage
合作研究:CNS核心:中:安全、可靠、高效的长期存储
- 批准号:
2106259 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
Highly Efficient Organic Long-persistent Luminescent System by Improving Photo-Induced Charge Separation process
通过改进光致电荷分离过程实现高效有机长余辉发光系统
- 批准号:
21H02020 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Highly-efficient and smart Power Electronics Systems for long-lasting energy storage Systems in smart grid applications
用于智能电网应用中持久储能系统的高效智能电力电子系统
- 批准号:
RGPIN-2016-06519 - 财政年份:2020
- 资助金额:
$ 44万 - 项目类别:
Discovery Grants Program - Individual