NRI: Adaptive Wearable Robots for Movement Assistance via Bio-Inspired Sensorimotor Integration
NRI:通过仿生感觉运动集成提供运动辅助的自适应可穿戴机器人
基本信息
- 批准号:2221315
- 负责人:
- 金额:$ 147.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant will beneficially impact human health and quality of life by enabling new functionality and improving the state of the art in assistive upper-limb wearable robots to amplify the functional independence of people with movement disorders. Upper-limb wearable robots use body-mounted sensors and actuators to monitor the human user and predict intention to dynamically adapt and provide physical assistance. These devices are envisioned for long-term daily assistance, and could therefore become a primary treatment for a variety of mobility impairments, including cerebral palsy, the most common cause of serious physical disability in childhood. However, the advancement of wearable robots has been limited by critical knowledge gaps in the areas of actuator and control technologies, and such devices are not widely available. This award supports research to develop novel bio-inspired soft robotic actuators and human-robot control algorithms to enable comfortable, low-cost, high-power wearable robots that seamlessly interface with human users. The technologies developed will be adaptable to general use, including providing physical assistance to the elderly, and for deployment in manufacturing, nursing, and other industrial sectors. Through collaborations among academics and clinicians, this project will form linkages between science and engineering and technology development to enhance human health. The project integrates K-12 outreach events at the University of California, Riverside, a Hispanic Serving Institution, to broaden the participation of under-represented groups. Most tasks in daily life involve physical interaction with the environment, facilitated by direct modulation of joint impedances. Upper-limb wearable robots arranged parallel to the joints therefore require impedance modulation capabilities. However, constraints on the morphology prohibit the use of sophisticated controllers for physical interaction, including impedance control with high bandwidth motors. This research will harness biological principles to design novel wearable robots with direct impedance modulation capabilities, including leveraging muscle topology, sensorimotor coupling, and exploiting the passive properties of actuators for stability. The research team will develop novel soft actuators with impedance modulation capabilities, proprioceptive reflex loops for actively modulating impedance, and human-in-the-loop controllers to regulate robot impedance through a non-invasive neural interface. A series of human experiments will evaluate the efficacy of the prototype devices. This project will contribute methods and theories in the area of assistive wearable robots with a focus on pediatric movement impairments, resulting in insight into muscle coordination, skill acquisitions, and object manipulation in individuals with motor impairments and neurotypical participants, with and without robotic assistance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔拨款将通过启用新功能和提高辅助上肢可穿戴机器人的技术水平,增强运动障碍患者的功能独立性,从而对人类健康和生活质量产生有益的影响。上肢可穿戴机器人使用安装在身体上的传感器和执行器来监测人类使用者并预测其意图,以动态适应并提供物理帮助。这些设备被设想为长期的日常辅助,因此可能成为各种行动障碍的主要治疗方法,包括脑瘫,这是儿童严重身体残疾的最常见原因。然而,可穿戴机器人的进步受到执行器和控制技术领域的关键知识差距的限制,并且此类设备并未广泛使用。该奖项支持开发新型仿生软机器人执行器和人机控制算法的研究,以实现舒适、低成本、大功率的可穿戴机器人,与人类用户无缝对接。所开发的技术将适用于一般用途,包括为老年人提供身体援助,并可用于制造业、护理业和其他工业部门。通过学术界和临床医生之间的合作,该项目将建立科学、工程和技术发展之间的联系,以促进人类健康。该项目整合了加州大学河滨分校(一所西班牙裔服务机构)的K-12外展活动,以扩大代表性不足群体的参与。日常生活中的大多数任务都涉及到与环境的物理相互作用,通过关节阻抗的直接调制来促进。因此,与关节平行布置的上肢可穿戴机器人需要阻抗调制能力。然而,形态学上的限制禁止使用复杂的控制器进行物理交互,包括高带宽电机的阻抗控制。这项研究将利用生物学原理来设计具有直接阻抗调制能力的新型可穿戴机器人,包括利用肌肉拓扑结构、感觉运动耦合以及利用执行器的被动特性来保持稳定性。研究团队将开发具有阻抗调制能力的新型软致动器,用于主动调制阻抗的本体感觉反射回路,以及通过非侵入性神经接口调节机器人阻抗的人在回路控制器。一系列人体实验将评估原型装置的功效。该项目将为辅助可穿戴机器人领域提供方法和理论,重点关注儿童运动障碍,从而深入了解运动障碍患者和神经正常参与者的肌肉协调、技能获取和物体操作,无论是否有机器人辅助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Realmuto其他文献
Iterative learning control for human-robot collaborative output tracking
人机协作输出跟踪的迭代学习控制
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jonathan Realmuto;Rahul B. Warrier;S. Devasia - 通讯作者:
S. Devasia
Dynamic model of a cylindrical ionic polymer-metal composite actuator
圆柱形离子聚合物-金属复合致动器的动力学模型
- DOI:
10.1109/urai.2011.6145985 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Shivakanth Gutta;Jonathan Realmuto;W. Yim;K. Kim - 通讯作者:
K. Kim
Personalizing User Engagement Dynamics in a Non-Verbal Communication Game for Cerebral Palsy
脑瘫非语言交流游戏中的个性化用户参与动态
- DOI:
10.1109/ro-man50785.2021.9515466 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
N. Dennler;Catherine Yunis;Jonathan Realmuto;Terence D. Sanger;S. Nikolaidis;Maja J. Matari'c - 通讯作者:
Maja J. Matari'c
Modeling deep brain stimulation evoked responses with phase oscillator networks
使用相位振荡器网络模拟深部脑刺激诱发的反应
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jonathan Realmuto;Jessica S. L. Vidmark;Terence D. Sanger - 通讯作者:
Terence D. Sanger
Jonathan Realmuto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Adapting to the Human Body: Shape-Adaptive Attachment for Parallel Wearable Robots Using Jamming
适应人体:使用干扰的并行可穿戴机器人的形状自适应附件
- 批准号:
2240508 - 财政年份:2023
- 资助金额:
$ 147.45万 - 项目类别:
Standard Grant
CAREER: MINDWATCH: Multimodal Intelligent Noninvasive brain state Decoder for Wearable AdapTive Closed-loop arcHitectures
职业:MINDWATCH:用于可穿戴自适应闭环结构的多模态智能无创大脑状态解码器
- 批准号:
2226123 - 财政年份:2022
- 资助金额:
$ 147.45万 - 项目类别:
Continuing Grant
W-HTF-RL: Collaborative Research: Improving the Future of Retail and Warehouse Workers with Upper Limb Disabilities via Perceptive and Adaptive Soft Wearable Robots
W-HTF-RL:协作研究:通过感知和自适应软可穿戴机器人改善上肢残疾的零售和仓库工人的未来
- 批准号:
2231419 - 财政年份:2022
- 资助金额:
$ 147.45万 - 项目类别:
Standard Grant
AI-controlled adaptive fitting device for prosthetics and wearable technologies
用于假肢和可穿戴技术的人工智能控制的自适应适配装置
- 批准号:
10004425 - 财政年份:2021
- 资助金额:
$ 147.45万 - 项目类别:
Collaborative R&D
Creating adaptive, wearable technologies to assess and intervene for individuals with ADRDs
创建自适应可穿戴技术来评估和干预 ADRD 患者
- 批准号:
10616670 - 财政年份:2021
- 资助金额:
$ 147.45万 - 项目类别:
Fully-Customizable Wireless Wearable EEG Monitoring Platform with Motion Artifact Resilience and Input-Adaptive Active-Electrode Recording
完全可定制的无线可穿戴脑电图监测平台,具有运动伪影弹性和输入自适应有源电极记录
- 批准号:
571248-2022 - 财政年份:2021
- 资助金额:
$ 147.45万 - 项目类别:
Idea to Innovation
Adaptive Integrated Circuits for Wearable Technology
适用于可穿戴技术的自适应集成电路
- 批准号:
RGPIN-2015-04777 - 财政年份:2021
- 资助金额:
$ 147.45万 - 项目类别:
Discovery Grants Program - Individual
Investigation of the neuromuscular response and training effects of wearable adaptive resistance in children with cerebral palsy
脑瘫儿童可穿戴自适应阻力神经肌肉反应及训练效果研究
- 批准号:
10581663 - 财政年份:2021
- 资助金额:
$ 147.45万 - 项目类别:
Investigation of the neuromuscular response and training effects of wearable adaptive resistance in children with cerebral palsy
脑瘫儿童可穿戴自适应阻力神经肌肉反应及训练效果研究
- 批准号:
10371871 - 财政年份:2021
- 资助金额:
$ 147.45万 - 项目类别:
Creating adaptive, wearable technologies to assess and intervene for individuals with ADRDs
创建自适应可穿戴技术来评估和干预 ADRD 患者
- 批准号:
10390367 - 财政年份:2021
- 资助金额:
$ 147.45万 - 项目类别:














{{item.name}}会员




