CCI Phase I: NSF Center for Advanced Molecular Architectures for Quantum Information Science
CCI 第一阶段:NSF 量子信息科学先进分子架构中心
基本信息
- 批准号:2221453
- 负责人:
- 金额:$ 180万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The NSF Center for Advanced Molecular Architectures for Quantum Information Science is supported by the Centers for Chemical Innovation (CCI) Program in the Division of Chemistry. Professor Anastassia Alexandrova in the Department of Chemistry and Biochemistry at the University of California-Los Angeles (UCLA) will lead a research team composed of Assistant Professor Justin Caram (Chemistry and Biochemistry, UCLA), Distinguished Professor Miguel Garcia-Garibay (Chemistry and Biochemistry, UCLA), Professor Eric Hudson (Physics and Astronomy, UCLA), and Professor Anna Krylov (Chemistry, University of Southern California) to develop new molecular and surface platforms that contain molecular appendages that can act as quantum bits (qubits). These “quantum functional groups” have particular magnetic spin and electric charge, which can be excited with lasers and prepared into “superpositions” of quantum states—the fundamental building block of a quantum computer. However, unlike current quantum computing platforms, which are built from the top down and are limited to less than 100 qubits, quantum functional groups on molecules can be made and scaled to trillions of identical addressable qubits, potentially providing a novel architecture for enormous quantum computers. Computational programs based on qubits are expected to solve problems at much higher speeds than classical computers and simulate complicated systems that are beyond the capabilities of any current computer. Such quantum approaches may also revolutionize ultra-secure communications (quantum Internet) and ultra-precise chemical and physical measurements (quantum sensing). Using the rules of chemistry and the tools of molecular design and synthesis, coupled with advanced spectroscopy and computation, the Center will make use of unrealized molecular complexity to develop quantum information systems that enable substantially more flexible, scalable, and achievable quantum systems. As a result, the Center will tailor the systems to meet a variety of quantum information science (QIS) needs in sensing and computing, while simultaneously opening a new branch of chemistry, namely, the chemistry of QIS. The center will also engage researchers at the intersection of multiple traditional disciplines, where the future of QIS resides. The Center’s team will advance education via workshops, innovative courses and modules, and a teachers education program. Students will be recruited at all levels and from diverse backgrounds using innovative strategies, and the contributions of women and underrepresented groups will be promoted through Center activities, while growing the QIS community centered in chemistry. Achieving quantum enhancement in sensing, communication, and computing requires the high-fidelity preparation, maintenance, and readout of defined quantum states, which then would be resistant to decoherence and amenable to entanglement. So far, the most successful systems that exhibit such clean quantum states are those of extreme simplicity: atoms, very small molecules in vacuo, and defects in solids. Because the electronic states in these systems are “closed”, i.e., strictly localized to an atom or a defect, they can be optically cycled without dissipation to the environment, and decoherence can be managed. However, what is gained in coherence, is lost in system complexity and thus flexibility, scalability and eventual practicability. This NSF Center will use the rules of chemistry to substantially expand the repertoire of systems, and therefore the capabilities, available for QIS. We will design molecules that carry qubit functionalities (or quantum functional groups), by using chemical complexity rather than avoiding it. Because molecules are identical and can be synthesized in molar quantities, they can be assembled into scalable, next-generation quantum information platforms - a combination of features not yet realized. Broader impacts will include education of researchers at the intersection of traditional disciplines: physical, synthetic, and theoretical chemistry, and physics. We will recruit students at all levels and from diverse backgrounds, using innovative recruiting strategies, such as through research days for visiting undergraduate students, and young researchers at the moment of transfer from Community Colleges. Promoting women and underrepresented groups will be central to all Center activities. The Center will make a significant effort toward building the QIS community housed in the field of chemistry, through organizing symposia, bootcamps, workshops, cross-departmental courses, innovative modules for undergraduate classes, and regular communication of all researchers of the center, from all involved backgrounds. The Center will develop a teacher education program, through which they will be provided visualization tools that will amplify their ability to reach large numbers of high school students. Outreach to the public will be done by growing and diversifying established, successful platforms, such as the Explore Your Universe event by the Division of Physical Sciences of UCLA.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国国家科学基金会量子信息科学高级分子结构中心由化学部化学创新中心(CCI)项目支持。加州大学洛杉矶分校(UCLA)化学与生物化学系Anastassia Alexandrova教授将带领一个由助理教授Justin Caram(加州大学洛杉矶分校化学与生物化学)、著名教授Miguel Garcia-Garibay(加州大学洛杉矶分校化学与生物化学)、Eric Hudson教授(加州大学洛杉矶分校物理与天文学)和Anna Krylov教授(南加州大学化学)组成的研究小组开发新的分子和表面平台,其中包含可用作量子位(Qubit)的分子附件。这些“量子官能团”具有特殊的磁自旋和电荷,可以用激光激发并准备成量子态的“叠加”--这是量子计算机的基本构件。然而,与目前自上而下构建的量子计算平台不同,分子上的量子官能团可以被制造出来,并扩展到数万亿个相同的可寻址量子位,这可能会为巨大的量子计算机提供一种新颖的架构。基于量子比特的计算程序有望以比经典计算机更快的速度解决问题,并模拟超出当前任何计算机能力的复杂系统。这种量子方法还可能给超安全通信(量子互联网)和超精密化学和物理测量(量子传感)带来革命性的变化。利用化学规则和分子设计和合成工具,再加上先进的光谱学和计算,该中心将利用尚未实现的分子复杂性来开发量子信息系统,使量子系统变得更加灵活、可扩展和可实现。因此,该中心将量身定做这些系统,以满足传感和计算方面的各种量子信息科学(QIS)需求,同时开设一个新的化学分支,即QIS化学。该中心还将在QIS的未来所在的多个传统学科的交叉点吸引研究人员。该中心的团队将通过研讨会、创新课程和模块以及教师教育计划来促进教育。将使用创新战略在各级和不同背景招收学生,并将通过中心的活动促进妇女和代表性不足群体的贡献,同时发展以化学为中心的QIS社区。要在传感、通信和计算中实现量子增强,需要高保真地准备、维护和读出定义的量子态,然后这些量子态将抵抗退相干和服从纠缠。到目前为止,最成功的呈现这种干净量子态的系统是那些极其简单的系统:原子,真空中的非常小的分子,以及固体中的缺陷。由于这些系统中的电子态是封闭的,即严格地局限于原子或缺陷,它们可以被光学循环而不耗散到环境中,并且可以控制退相干。然而,在一致性中获得的东西失去了系统的复杂性,从而失去了灵活性、可伸缩性和最终的实用性。这个NSF中心将使用化学规则来大幅扩展QIS可用的系统的指令库,从而扩展其能力。我们将通过利用化学复杂性而不是避免它来设计具有量子比特功能(或量子官能团)的分子。由于分子是相同的,可以按摩尔量合成,它们可以组装成可扩展的下一代量子信息平台-这是尚未实现的特征的组合。更广泛的影响将包括对传统学科交叉的研究人员的教育:物理、合成和理论化学以及物理学。我们将采用创新的招生策略,招收不同层次和不同背景的学生,例如通过访问本科生的研究日,以及从社区学院转学的年轻研究人员。促进妇女和任职人数不足的群体将是中心所有活动的核心。该中心将通过组织研讨会、训练营、研讨会、跨部门课程、本科生课程创新模块以及中心所有研究人员来自所有相关背景的定期交流,为建立化学领域的QIS社区做出重大努力。该中心将制定一项教师教育计划,通过该计划,将向他们提供可视化工具,以增强他们接触大量高中生的能力。面向公众的推广将通过发展和多样化成熟的成功平台来实现,例如加州大学洛杉矶分校物理科学部的探索你的宇宙活动。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the prospects of optical cycling in diatomic cations: effects of transition metals, spin–orbit couplings, and multiple bonds
- DOI:10.1080/00268976.2022.2107582
- 发表时间:2022-08
- 期刊:
- 影响因子:1.7
- 作者:P. Wójcik;E. Hudson;A. Krylov
- 通讯作者:P. Wójcik;E. Hudson;A. Krylov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anastassia Alexandrova其他文献
Client Satisfaction with Home Care Services in Rural Russia
俄罗斯农村地区家庭护理服务的客户满意度
- DOI:
10.1300/j031v18n01_05 - 发表时间:
2006 - 期刊:
- 影响因子:5.1
- 作者:
R. Struyk;Anastassia Alexandrova;Igor G. Belyakov;K. Chagin - 通讯作者:
K. Chagin
Anastassia Alexandrova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anastassia Alexandrova', 18)}}的其他基金
Quantifying and Designing for Electrostatic Preorganization in Enzymes
酶中静电预组织的量化和设计
- 批准号:
2203366 - 财政年份:2022
- 资助金额:
$ 180万 - 项目类别:
Continuing Grant
Quantifying and Designing for Electrostatic Preorganization in Enzymes
酶中静电预组织的量化和设计
- 批准号:
1903808 - 财政年份:2019
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CAREER: From advancing of theory of chemical bonding to advanced cluster-based materials
职业生涯:从化学键合理论的进步到先进的簇基材料
- 批准号:
1351968 - 财政年份:2014
- 资助金额:
$ 180万 - 项目类别:
Continuing Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
CCI Phase I: NSF Center for Adapting Flaws into Features
CCI 第一阶段:NSF 缺陷调整中心
- 批准号:
2413590 - 财政年份:2024
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Sustainable Photoredox Catalysis (SuPRCat)
CCI 第一阶段:NSF 可持续光氧化还原催化中心 (SuPRCat)
- 批准号:
2318141 - 财政年份:2023
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Polymers for a Circular Economy (PCE)
CCI 第一阶段:NSF 循环经济聚合物中心 (PCE)
- 批准号:
2317582 - 财政年份:2023
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase 1: NSF Center for MXenes Synthesis, Tunability and Reactivity (M-STAR)
CCI 第一阶段:NSF MXene 合成、可调性和反应性中心 (M-STAR)
- 批准号:
2318105 - 财政年份:2023
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Single-Entity Nanochemistry and Nanocrystal Design
CCI 第一阶段:NSF 单一实体纳米化学和纳米晶体设计中心
- 批准号:
2221062 - 财政年份:2022
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Chemoenzymatic Synthesis
CCI 第一阶段:NSF 化学酶合成中心
- 批准号:
2221346 - 财政年份:2022
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Interfacial Ionics
CCI 第一阶段:NSF 界面离子中心
- 批准号:
2221599 - 财政年份:2022
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Adapting Flaws into Features
CCI 第一阶段:NSF 缺陷调整中心
- 批准号:
2124983 - 财政年份:2021
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase 1: NSF Center for Quantum Electrodynamics for Selective Transformations (QuEST)
CCI 第一阶段:NSF 选择性转变量子电动力学中心 (QuEST)
- 批准号:
2124398 - 财政年份:2021
- 资助金额:
$ 180万 - 项目类别:
Standard Grant
CCI Phase I: NSF Center for Quantum Dynamics on Modular Quantum Devices (CQD-MQD)
CCI 第一阶段:NSF 模块化量子器件量子动力学中心 (CQD-MQD)
- 批准号:
2124511 - 财政年份:2021
- 资助金额:
$ 180万 - 项目类别:
Standard Grant