CNS Core: Small: Transparently Scaling Graph Neural Network Training to Large-Scale Models and Graphs
CNS 核心:小型:透明地将图神经网络训练扩展到大规模模型和图
基本信息
- 批准号:2224054
- 负责人:
- 金额:$ 53.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large-scale graphs with billions of edges are ubiquitous in many industry, science, and engineering fields such as recommendation systems, social graph analysis, knowledge bases, materials science, and biology. In particular, Graph Neural Networks (GNN), an emerging class of machine learning (ML) models, are increasingly adopted due to their superior performance in many tasks. Unfortunately, the progress towards training GNNs on large-scale real-world graphs is undermined by the lack of adequate systems support for ML practitioners. This project will develop fundamental research on algorithms, systems, and infrastructures to meet the pressing and growing need for GNN training systems that can scale to both large graph datasets and large expressive GNN models transparently to users. First, this project will develop split parallelism, a novel parallel training paradigm designed to support arbitrarily large-scale graphs and GNN models by scaling out to distributed and multi-GPU (graphics processing unit) systems. Split parallelism is tailored to the specific bottlenecks of GNNs and introduces a set of techniques to transparently split the training computation across GPUs. Second, this project will develop systems for scalable graph sampling, which can be a major performance bottleneck in GNN training. It will develop a novel fragment-based in-GPU sampling approach that transparently splits samples into multiple fragments to maximize data access locality and scalability.Supporting large-scale graphs and GNN models will unleash innovation in a wide range of domains by making it easier for ML practitioners to develop large and expressive models without having to work around the scalability limitations of current GNN training systems. The project will develop novel approaches for parallel training and sampling and will introduce innovations in algorithms, infrastructure, and system design for the areas of general machine learning and graph analytics. This project will stress technology transfer to integrate the findings into popular open-source GNN training tools such as the Deep Graph Library (DGL). The PIs will also support colleagues at their department working on question answering using knowledge graphs. The project will improve the training of both graduate and undergraduate students, emphasizing demographic diversity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
具有数十亿条边的大规模图在许多工业、科学和工程领域中无处不在,例如推荐系统、社会图分析、知识库、材料科学和生物学。特别是,图神经网络(GNN),一种新兴的机器学习(ML)模型,由于其在许多任务中的优越性能而被越来越多地采用。不幸的是,由于缺乏对ML从业者足够的系统支持,在大规模现实世界图上训练gnn的进展受到了破坏。该项目将对算法、系统和基础设施进行基础研究,以满足对GNN训练系统的迫切和日益增长的需求,这些系统可以向用户透明地扩展到大型图数据集和大型表达GNN模型。首先,该项目将开发分裂并行,这是一种新的并行训练范例,旨在通过扩展到分布式和多gpu(图形处理单元)系统来支持任意大规模的图和GNN模型。分割并行是针对gnn的特定瓶颈而定制的,并引入了一组技术来跨gpu透明地分割训练计算。其次,该项目将开发可扩展图采样系统,这可能是GNN训练的主要性能瓶颈。它将开发一种新颖的基于片段的gpu内采样方法,透明地将样本分成多个片段,以最大限度地提高数据访问局部性和可扩展性。支持大规模图和GNN模型将在广泛的领域释放创新,使ML从业者更容易开发大型和富有表现力的模型,而不必绕过当前GNN训练系统的可扩展性限制。该项目将开发并行训练和采样的新方法,并将为通用机器学习和图形分析领域引入算法、基础设施和系统设计方面的创新。该项目将强调技术转移,将研究结果整合到流行的开源GNN培训工具中,如深度图库(DGL)。pi还将支持他们部门的同事使用知识图谱进行问题回答。该项目将改进对研究生和本科生的培训,强调人口的多样性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marco Serafini其他文献
Enhancing Computation Pushdown for Cloud OLAP Databases
增强云 OLAP 数据库的计算下推
- DOI:
10.48550/arxiv.2312.15405 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yifei Yang;Xiangyao Yu;Marco Serafini;Ashraf Aboulnaga;Michael Stonebraker - 通讯作者:
Michael Stonebraker
Marco Serafini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
- 批准号:
2322919 - 财政年份:2024
- 资助金额:
$ 53.22万 - 项目类别:
Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
- 批准号:
2343469 - 财政年份:2024
- 资助金额:
$ 53.22万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
- 批准号:
2418188 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别:
Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
- 批准号:
2317698 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别:
Standard Grant
CNS Core: Small: Toward Opportunistic, Fast, and Robust In-Cache AI Acceleration at the Edge
CNS 核心:小型:在边缘实现机会主义、快速且稳健的缓存内 AI 加速
- 批准号:
2228028 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别:
Standard Grant
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
- 批准号:
2233894 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别:
Standard Grant
CNS Core: Small: Redesigning I/O Across Heterogeneous Systems
CNS 核心:小型:跨异构系统重新设计 I/O
- 批准号:
2231724 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
- 批准号:
2242503 - 财政年份:2023
- 资助金额:
$ 53.22万 - 项目类别:
Standard Grant